研究报告

赛买提鲜杏整果热风干燥特性及水分迁移规律研究

  • 王雪妃 ,
  • 王田 ,
  • 许铭强 ,
  • 张艳艳 ,
  • 承春平 ,
  • 杜雨桐 ,
  • 陈恺 ,
  • 李焕荣
展开
  • 1(新疆农业大学 食品科学与药学学院,新疆 乌鲁木齐,830052)
    2(新疆农业科学院农产品贮藏加工研究所,新疆 乌鲁木齐,830091)
    3(郑州轻工业大学 食品与生物工程学院,河南 郑州,540002)
第一作者:硕士研究生(陈恺高级实验师为通信作者,E-mail:chenk117@sohu.com)

收稿日期: 2022-07-19

  修回日期: 2022-08-15

  网络出版日期: 2023-11-20

基金资助

国家重点研发计划项目(2019YFD1002303-2);2020年中央财政林草科技推广示范项目(2020TG19号)

Study on hot air drying characteristics and moisture migration of Saimaiti apricot

  • WANG Xuefei ,
  • WANG Tian ,
  • XU Mingqiang ,
  • ZHANG Yanyan ,
  • CHENG Chunping ,
  • DU Yutong ,
  • CHEN Kai ,
  • LI Huanrong
Expand
  • 1(School of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China)
    2(Institute of Agricultural Products Storage and Processing, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China)
    3(School of Food and Bioengineering, Zhengzhou University of Light Technology, Zhengzhou 540002, China)

Received date: 2022-07-19

  Revised date: 2022-08-15

  Online published: 2023-11-20

摘要

为研究赛买提杏整果在热风干燥过程中的水分迁移及分布规律,以赛买提鲜杏为原料进行干燥试验,探究整果在不同热风干燥温度(40、50、60 ℃)下的干燥特性,建立杏整果干燥动力学数学模型;利用低场核磁共振技术(low-field nuclear magnetic resonance,LF-NMR)和磁共振成像技术(magnetic resonance imaging,MRI),检测干燥过程中杏整果横向弛豫时间(T2)和峰面积的变化以及MRI成像伪彩图的变化。结果表明,干燥过程中干燥速率呈“W”型动态波动变化,无恒速阶段,温度是影响干燥速率的重要因素。根据干燥过程中水分比和干燥时间的关系拟合数据,发现三次多项式数学模型拟合效果最好(R2=0.997 0)。经验证,该数学模型能很好地描述和预测杏整果热风干燥过程。LF-NMR实验表明,新鲜赛买提杏中存在结合水T21(1~10 ms)、不易流动水T22(10~100 ms)、自由水T23(100~1 000 ms)3种水分状态,其中含有95.95%的自由水。在热风干燥过程中,温度为40、50、60 ℃时干燥至终点分别用时为124、48、32 h,随着温度的升高能够显著提高干燥速率,促进其内部的结合水、不易流动水和自由水的迁移。干燥前期一部分T23先于T22T21被脱除,部分T23转化为T22T21,同时杏核内部水分作为补充逐渐扩散到杏肉中,干燥后期,水分扩散速率降低,T21T22相互转化并逐渐脱除。该研究结果可为控制赛买提杏整果热风干燥过程及预测水分含量提供理论依据。

本文引用格式

王雪妃 , 王田 , 许铭强 , 张艳艳 , 承春平 , 杜雨桐 , 陈恺 , 李焕荣 . 赛买提鲜杏整果热风干燥特性及水分迁移规律研究[J]. 食品与发酵工业, 2023 , 49(20) : 91 -99 . DOI: 10.13995/j.cnki.11-1802/ts.033027

Abstract

To study the moisture migration and distribution regularities of the apricot in the process of hot air drying, this study used fresh apricot fruits of Saimaiti as raw materials to conduct drying experiments, to explore the drying characteristics of whole apricot fruits under different hot air drying temperatures (40, 50, 60 ℃), and to establish the mathematical model of whole apricot fruit drying dynamics. The changes in transverse relaxation time (T2) and peak area of whole apricot fruit, as well as the changes in pseudo-color map of magnetic resonance imaging (MRI) imaging, were detected by low-field nuclear magnetic resonance (LF-NMR) and MRI. Results showed that the drying rate showed a “W” type dynamic fluctuation in the drying process, and there was no constant drying rate stage. The temperature was an important factor affecting the drying rate. According to the fitting data of the relationship between moisture ratio and drying time in the drying process, it was found that the cubic polynomial mathematical model had the best fitting effect (R2=0.997 0). It was proved that the mathematical model could well describe and predict the hot air drying process of whole apricot fruit. LF-NMR experiment showed that there were three kinds of water in fresh apricot fruits of Saimaiti, including bound water T21(1-10 ms), immobilized water T22(10-100 ms), and free water T23(100-1 000 ms), in which there was 95.95% free water. During the hot air drying process, the drying time at 40 ℃, 50 ℃, and 60 ℃ was 124 h, 48 h, and 32 h, respectively. With the increase in temperature, the drying rate significantly increased, and the transfer of bound water, immobilized water, and free water was promoted. At the early stage of drying, part of T23 was lost before the T22 and T21, and the other T23 transferred into T22 and T21. Meanwhile, the internal water of the apricot core gradually spread into the apricot meat as a supplement. At the late stage of drying, the water diffusion rate decreased, and T21 and T22 transformed into and gradually removed. The results could provide a theoretical basis for controlling the hot air drying process and predicting the moisture content of whole apricot fruits.

参考文献

[1] 孙浩元, 杨丽, 张俊环, 等.杏种质资源研究进展[J].经济林研究, 2017, 35(3):251-258.
SUN H Y, YANG L, ZHANG J H, et al.Advances in researches on apricot germplasm resources[J].Nonwood Forest Research, 2017, 35(3):251-258.
[2] 新疆维吾尔自治区统计局,国家统计局新疆调查总队. 新疆统计年鉴-2020[M].北京:中国统计出版社, 2021:341-342.
[3] 谢辉, 艾尼瓦尔·肉孜, 王乔, 等.新疆杏产业发展现状分析及前景展望[J].中国果树, 2019(2):108-112.
XIE H, ANIVAL R, WANG Q, et al.Analysis and prospect of xinjiang apricot industry[J].China Fruits, 2019(2):108-112.
[4] 宋永宏, 杨晓华, 李静江, 等.不同杏品种果实营养成分分析及综合评价[J].中国农学通报, 2018, 34(23):65-71.
SONG Y H, YANG X H, LI J J, et al.Fruits of apricot cultivars:Nutritional components analysis and comprehensive evaluation[J].Chinese Agricultural Science Bulletin, 2018, 34(23):65-71.
[5] 吴月亮, 许淼, 董胜君, 等.不同产区苦杏仁营养成分分析[J].食品工业科技, 2019, 40(23):300-305.
WU Y L, XU M, DONG S J, et al.Analysis of nutritional composition of bitter almond from different growing areas[J].Science and Technology of Food Industry, 2019, 40(23):300-305.
[6] 沈静, 王敏, 冀晓龙, 等.果蔬干制技术的应用及研究进展[J].陕西农业科学, 2019, 65(3):95-97.
SHEN J, WANG M, JI X L, et al.Application of dehydrated techniques of fruit and vegetable and its research advance. Shaanxi Journal of Agricultural Sciences, 2019, 65(3):95-97.
[7] 文静, 代建武, 张黎骅.苹果片微波间歇干燥特性及模型拟合[J].食品与发酵工业, 2019, 45(4):81-88.
WEN J, DAI J W, ZHANG L H.Microwave intermittent drying characteristics and model fitting for apple slices[J].Food and Fermentation Industries, 2019,45(4):81-88.
[8] 陈思奇, 顾苑婷, 王霖岚, 等.刺梨不同干燥模型建立及综合品质分析[J].食品科学, 2020, 41(3):47-54.
CHEN S Q, GU Y T, WANG L L, et al.Drying modeling and comprehensive quality analysis of Rosa roxburghii tratt fruit[J].Food Science, 2020,41(3):47-54.
[9] 李琼, 孟伊娜, 陈恺, 等.红枣片热风干燥动力学研究[J].食品工业, 2016, 37(3):77-80.
LI Q, MENG Y N, CHEN K, et al.Study on the hot-air drying dynamics of red jujube slices[J].The Food Industry, 2016, 37(3):77-80.
[10] DA SILVA W P, E SILVA C M D P S, GAMA F J A, et al.Mathematical models to describe thin-layer drying and to determine drying rate of whole bananas[J].Journal of the Saudi Society of Agricultural Sciences, 2014, 13(1):67-74.
[11] 巨浩羽, 肖红伟, 郑霞, 等.干燥介质相对湿度对胡萝卜片热风干燥特性的影响[J].农业工程学报, 2015, 31(16):296-304.
JU H Y, XIAO H W, ZHENG X, et al.Effect of hot air relative humidity on drying characteristics of carrot slabs[J].Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(16):296-304.
[12] 靳力为. 超声强化对杏冻干特性的研究[D].洛阳:河南科技大学, 2020.
JIN L W.Research on the frozen characteristics of apricots with ultrasonic reinforcement[D].Luoyang:Henan University of Science and Technology, 2020.
[13] DENG L Z, MUJUMDAR A S, YANG X H, et al.High humidity hot air impingement blanching (HHAIB) enhances drying rate and softens texture of apricot via cell wall pectin polysaccharides degradation and ultrastructure modification[J].Food Chemistry, 2018, 261:292-300.
[14] LYU W Q, ZHANG M, BHANDARI B, et al.Smart NMR method of measurement of moisture content of vegetables during microwave vacuum drying[J].Food and Bioprocess Technology, 2017,10(12):2251-2260.
[15] 孙炳新, 赵宏侠, 冯叙桥, 等.基于低场核磁和成像技术的鲜枣贮藏过程水分状态的变化研究[J].中国食品学报, 2016, 16(5):252-257.
SUN B X, ZHAO H X, FENG X Q, et al.Studies on the change of moisture state of fresh jujube during storage base on LF-NMR and MRI[J].Journal of Chinese Institute of Food Science and Technology, 2016, 16(5):252-257.
[16] 黄国中, 王琴, 刘东杰.基于LF-NMR及其成像技术探究冬枣贮藏过程中的水分变化[J].食品工业科技, 2021, 42(21):319-324.
HUANG G Z, WANG Q, LIU D J.Application of LF-NMR and its imaging technology in the study of winter jujube storage process[J].Science and Technology of Food Industry, 2021,42(21):319-324.
[17] 张绪坤, 祝树森, 黄俭花, 等.用低场核磁分析胡萝卜切片干燥过程的内部水分变化[J].农业工程学报, 2012, 28(22):282-287.
ZHANG X K, ZHU S S, HUANG J H, et al.Analysis on internal moisture changes of carrot slices during drying process using low-field NMR[J].Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(22):282-287.
[18] 徐建国, 张森旺, 徐刚, 等.莲子薄层热风干燥特性与水分变化规律[J].农业工程学报, 2016, 32(13):303-309.
XU J G, ZHANG S W, XU G, et al.Thin-layer hot air drying characteristics and moisture diffusivity of lotus seeds[J].Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(13):303-309.
[19] 朱文学, 尤泰斐, 白喜婷, 等.基于低场核磁的马铃薯切片干燥过程水分迁移规律研究[J].农业机械学报, 2018, 49(12):364-370.
ZHU W X, YOU T F, BAI X T, et al.Analysis of moisture transfer of potato slices during drying using low-field NMR[J].Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(12):364-370.
[20] KHEN M, WELLAAED R M, NAGY S A, et al.Detection and quantification of milk adulteration using NMR T2 relaxometry[J].Innovative Food Science and Emerging Technologies, 2016, 38:252-26
[21] 王威. 鲜杏干制过程中褐变机理的研究[D].乌鲁木齐:新疆农业大学, 2017.
WANG W.Research the mechanisms of browning during dried progress of apricot[D].Urumqi:Xinjiang Agricultural University, 2017.
[22] 刘格含, 王鹏, 吴小华, 等.农产品热风干燥传热传质数值模拟研究进展[J].食品工业科技, 2020, 41(22):342-350;357.
LIU G H, WANG P, WU X H, et al.Numerical simulation of heat and mass transfer by hot air drying of agricultural products[J].Science and Technology of Food Industry, 2020,41(22):342-350;357.
[23] 楚文靖, 盛丹梅, 张楠, 等.红心火龙果热风干燥动力学模型及品质变化[J].食品科学, 2019, 40(17):150-155.
CHU W J, SHENG D M, ZHANG N, et al.Hot-air drying of red-fleshed pitaya:Kinetic modelling and quality changes[J].Food Science, 2019,40(17):150-155.
[24] 尹慧敏, 聂宇燕, 沈瑾, 等.基于Weibull分布函数的马铃薯丁薄层热风干燥特性[J].农业工程学报, 2016, 32(17):252-258.
YIN H M, NIE Y Y, SHEN J, et al.Drying characteristics of diced potato with thin-layer by hot-wind based on Weibull distribution function[J].Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(17):252-258.
[25] 韦玉龙, 于宁, 许铭强, 等.热风干制温度对枣果微观组织结构的影响[J].农业工程学报, 2016, 32(7):244-251.
WEI Y L, YU N, XU M Q, et al.Effect of hot air drying temperature on microstructure of Chinese jujube. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(7):244-251.
[26] 巨浩羽, 赵海燕, 张卫鹏, 等.相对湿度对胡萝卜热风干燥过程中热质传递特性的影响[J].农业工程学报, 2021, 37(5):295-302.
JU H Y, ZHAO H Y, ZHANG W P, et al.Effects of relative humidity on heat and mass transfer characteristics of carrot during hot air drying[J].Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(5):295-302.
[27] 吴海虹, 朱道正, 卞欢, 等.农产品干燥技术发展现状[J].现代农业科技, 2016, 676(14):279-281.
WU H H, ZHU D Z, BIAN H, et al.Development status of agricultural products drying technology[J].Modern Agricultural Science and Technology, 2016, 676(14):279-281.
[28] KIRTIL E, OZTOP M H.1H nuclear magnetic resonance relaxometry and magnetic resonance imaging and applications in food science and processing[J].Food Engineering Reviews, 2016, 8(1):1-22.
[29] 李梁, 程秀峰, 杨尚雄, 等.基于低场核磁共振的热风干燥猕猴桃切片含水率预测模型[J].农业工程学报, 2020, 36(10):252-260.
LI L, CHENG X F, YANG S X, et al.Model for predicting the moisture content of kiwifruit slices during hot air drying based on low-field nuclear magnetic resonance[J].Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(10):252-260.
[30] 刘云宏, 李晓芳, 苗帅, 等.南瓜片超声-远红外辐射干燥特性及微观结构[J].农业工程学报, 2016, 32(10):277-286.
LIU Y H, LI X F, MIAO S, et al.Drying characteristics and microstructures of pumpkin slices with ultrasound combined far-infrared radiation[J].Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(10):277-286.
[31] 毕金峰, 王雪媛, 周林燕, 等.脉动压差闪蒸处理对苹果片水分散失特性及品质影响[J].农业工程学报, 2016, 32(S2):376-382.
BI J F, WANG X Y, ZHOU L Y, et al.Effect of instant controlled pressure drop drying on water loss and quality in apple slices[J].Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(z2):376-382.
[32] 李娜, 李瑜.利用低场核磁共振技术分析冬瓜真空干燥过程中的内部水分变化[J].食品科学, 2016, 37(23):84-88.
LI N, LI Y.Analysis of internal moisture changes of Benincasa hispida during vacuum drying using low-field NMR[J].Food Science, 2016, 37(23):84-88.
[33] XU F F, JIN X, ZHANG L, et al.Investigation on water status and distribution in broccoli and the effects of drying on water status using NMR and MRI methods[J].Food Research International, 2017, 96:191-197.
[34] 苑丽婧, 何秀, 林蓉, 等.超声预处理对猕猴桃水分状态及热风干燥特性的影响[J].农业工程学报, 2021, 37(13):263-272.
YUAN L J, HE X, LIN R, et al.Effects of ultrasound pretreatment on water state and hot-air drying characteristics of kiwifruit[J].Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(13):263-272.
[35] 王吉强, 邓利珍, 裴昱鹏, 等.成熟度对冬枣真空脉动干燥动力学及产品品质的影响[J].农业工程学报, 2021, 37(23):273-279.
WANG J Q, DENG L Z, PEI Y P, et al.Effects of maturity on pulsed vacuum drying kinetics and product quality of winter jujube[J].Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(23):273-279.
文章导航

/