研究报告

牡蛎肽对RAW264.7巨噬细胞的免疫调节作用

  • 李锦弘 ,
  • 郑慧珍 ,
  • 陈慧 ,
  • 刘书来 ,
  • 顾赛麒 ,
  • 王芮 ,
  • 相兴伟
展开
  • 1(浙江工业大学 食品科学与工程学院,浙江 杭州,310014)
    2(浙江省深蓝渔业资源高效开发利用重点实验室,浙江 杭州,310014)
    3(国家远洋水产品加工技术研发分中心,浙江 杭州,310014)
    4(海洋食品精深加工关键技术省部共建协同创新中心,大连工业大学,辽宁 大连,116034)
第一作者:本科生(相兴伟教授为通信作者,E-mail:xxw11086@zjut.edu.cn)

收稿日期: 2022-07-26

  修回日期: 2022-09-06

  网络出版日期: 2023-12-25

基金资助

国家重点研发计划项目(2020YFD0900902);国家自然科学基金项目(32101947)

The immunomodulatory effects of oyster peptide on mouse RAW264.7 cells

  • LI Jinhong ,
  • ZHENG Huizhen ,
  • CHEN Hui ,
  • LIU Shulai ,
  • GU Saiqi ,
  • WANG Rui ,
  • XIANG Xingwei
Expand
  • 1(College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China)
    2(Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China)
    3(National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou 310014, China)
    4(Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University,Dalian 116034, China)

Received date: 2022-07-26

  Revised date: 2022-09-06

  Online published: 2023-12-25

摘要

为研究牡蛎肽对小鼠巨噬细胞RAW264.7免疫功能的影响及其作用机制,该研究采用细胞计数试剂盒-8分别考察了不同浓度牡蛎肽对巨噬细胞RAW264.7增殖能力的影响。通过中性红法、硝酸还原酶法、酶联免疫吸附法及实时荧光定量PCR(quantitative real-time PCR,RT-PCR)法检测巨噬细胞的吞噬能力、一氧化氮(NO)、肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、白细胞介素-1β(interleukin-1β,IL-1β)、白细胞介素-6(interleukin-6,IL-6)及白细胞介素-10(interleukin-10,IL-10)的分泌量及其mRNA表达量,然后通过蛋白免疫印迹(Western-blot)法测定巨噬细胞中核因子-κB(nuclear factor kappa-B,NF-κB)通路主要蛋白p65和IκBα的磷酸化表达情况。结果表明,质量浓度在1 000 μg/mL以内时,牡蛎肽对巨噬细胞增殖率无显著影响(P>0.05)。此外,牡蛎肽可增强巨噬细胞吞噬活性,显著提高RAW264.7细胞NO、TNF-α、IL-1β、IL-6及IL-10的分泌量及相关基因mRNA表达水平(P<0.05),其作用效果呈现剂量依赖性。Western-blot结果显示,与脂多糖造模组比较,牡蛎肽能显著降低RAW264.7细胞IκBα及p65蛋白磷酸化水平(P<0.05)。牡蛎肽对小鼠RAW264.7巨噬细胞具有一定的免疫调节作用,其作用机理可能和NF-κB通路的激活有关。

本文引用格式

李锦弘 , 郑慧珍 , 陈慧 , 刘书来 , 顾赛麒 , 王芮 , 相兴伟 . 牡蛎肽对RAW264.7巨噬细胞的免疫调节作用[J]. 食品与发酵工业, 2023 , 49(22) : 49 -56 . DOI: 10.13995/j.cnki.11-1802/ts.033101

Abstract

To study the effect of oyster peptides on the immune function of mouse macrophage RAW264.7 and its mechanism, the effects of different concentrations of oyster peptides on the proliferation of RAW264.7 macrophages were investigated by cell counting kit-8 in this study. The phagocytosis of macrophages, secretion of NO, TNF-α, IL-1β, IL-6, and IL-10 and the relative mRNA expression levels of these cytokines were detected by neutral red method, nitrate reductase method, enzyme-linked immunosorbent assay, and real-time fluorescence quantitative PCR. The expression of protein p-p65/p65 and p-IκBα/IκBα in the NF-κB pathway of macrophages was detected by Western-blot. Results showed that OP concentration within 1 000 μg/mL had no significant effect on cell proliferation (P>0.05). OP could also enhance the phagocytosis of macrophages, and significantly increase the secretion of NO, TNF-α, IL-1β, IL-6 and IL-10 and the relative mRNA expression levels in RAW264.7 cells (P<0.05), while the regulating effect was dose-dependent. Western-blot results showed that OP significantly decreased the levels of IκBα and p65 phosphorylation in RAW264.7 cells compared with the lipopolysaccharide-induced group (P<0.05). These results suggested that OP had an immunomodulatory effect on mouse macrophage RAW264.7, and the mechanism may be related to the activation of the NF-κB pathway.

参考文献

[1] DING X A, LI J A, HOU Y L, et al.Comparative analysis of macrophage transcriptomes reveals a key mechanism of the immunomodulatory activity of Tricholoma matsutake polysaccharide[J].Oncology Reports, 2016, 36(1):503-513.
[2] YU Q, NIE S P, LI W J, et al.Macrophage immunomodulatory activity of a purified polysaccharide isolated from Ganoderma atrum[J].Phytotherapy Research, 2013, 27(2):186-191.
[3] VAN LEEUWEN L P M, GEURTSVANKESSEL C H, ELLERBROEK P M, et al.Immunogenicity of the mRNA-1273 COVID-19 vaccine in adult patients with inborn errors of immunity[J].The Journal of Allergy and Clinical Immunology, 2022, 149(6):1949-1957.
[4] MARQUANT Q, LAUBRETON D, DRAJAC C, et al.The microbiota plays a critical role in the reactivity of lung immune components to innate ligands[J].The FASEB Journal, 2021, 35(4):e21348.
[5] XUE H Y, HAN J J, HE B Y, et al.Bioactive peptide release and the absorption tracking of casein in the gastrointestinal digestion of rats[J].Food & Function, 2021, 12(11):5157-5170.
[6] NIRMAL N P, SANTIVARANGKNA C, RAJPUT M S, et al.Valorization of fish byproducts:Sources to end-product applications of bioactive protein hydrolysate[J].Comprehensive reviews in Food Science and Food Safety, 2022, 21(2):1803-1842.
[7] HUANG F F, ZHAO S S, YU F M, et al.Protective effects and mechanism of Meretrix meretrix oligopeptides against nonalcoholic fatty liver disease[J].Marine Drugs, 2017, 15(2):31.
[8] 阮晓慧, 韩军岐, 张润光, 等.食源性生物活性肽制备工艺、功能特性及应用研究进展[J].食品与发酵工业, 2016, 42(6):248-253.
RUAN X H, HAN J Q, ZHANG R G, et al.Progress in preparation, functional properties and application of food-derived bioactive peptides[J].Food and Fermentation Industries, 2016, 42(6):248-253.
[9] XIANG X W, ZHENG H Z, WANG R, et al.Ameliorative effects of peptides derived from oyster (Crassostrea gigas) on immunomodulatory function and gut microbiota structure in cyclophosphamide-treated mice[J].Marine Drugs, 2021, 19(8):456.
[10] 董晓伟, 姜国良, 李立德, 等.牡蛎综合利用的研究进展[J].海洋科学, 2004, 28(4):62-65.
DONG X W, JIANG G L, LI L D, et al.Research progress on comprehensive utilization of oyster[J].Marine Science, 2004, 28(4):62-65.
[11] 郭玉华, 曾名勇, 刘尊英, 等.牡蛎食品的研究进展[J].食品与发酵工业, 2007, 33(3):91-95.
GUO Y H, ZENG M Y, LIU Z Y, et al.Research progress on oyster food[J].Food and Fermentation Industry, 2007, 33(3):91-95.
[12] UMAYAPARVATHI S, MEENAKSHI S, VIMALRAJ V, et al.Antioxidant activity and anticancer effect of bioactive peptide from enzymatic hydrolysate of oyster (Saccostrea cucullata)[J].Biomedicine & Preventive Nutrition, 2014, 4(3):343-353.
[13] 方磊, 李国明, 徐珊珊, 等.牡蛎肽和三文鱼皮胶原肽低致敏性和抗过敏活性研究[J].食品与发酵工业, 2018, 44(9):91-97.
FANG L, LI G M, XU S S, et al.Studies on the hypoallergenic and antiallergenic activities of oyster peptides and salmon skin collagen peptides[J].Food and Fermentation Industries, 2018, 44(9):91-97.
[14] ALDAIRI A F, OGUNDIPE O D, PYE D A, et al.Antiproliferative activity of glycosaminoglycan-like polysaccharides derived from marine molluscs[J].Marine Drugs, 2018, 16(2):63.
[15] WANG X Q, YU H H, XING R E, et al.Hepatoprotective effect of Oyster peptide on alcohol-induced liver disease in mice[J].International Journal of Molecular Sciences, 2022, 23(15):8081.
[16] 俞萍, 张晓光, 陈学礼, 等.人参牡蛎复合肽固体饮料的配方研究[J].食品与发酵工业, 2022, 48(5):193-199.
YU P,ZHANG X G, CHEN X L, et al.Formulation of ginseng and oyster compound peptide solid beverage[J].Food and Fermentation Industries, 2022, 48(5):193-199.
[17] SIREGAR A S, NYIRAMANA M M, KIM E J, et al.Oyster-derived Tyr-Ala (YA) peptide prevents lipopolysaccharide/D-galactosamine-induced acute liver by suppressing inflammatory, apoptotic, ferroptotic, and pyroptotic signals[J].Marine Drugs, 2021, 19(11):614.
[18] 方磊, 张瑞雪, 陈亮, 等.牡蛎肽对TM3细胞性功能的影响[J].中国食品学报, 2021, 21(5):140-147.
FANG L, ZHANG R X, CHEN L, et al.Effects of oyster peptides on the sexual function of TM3 cells[J].Journal of Chinese Institute of Food Science and Technology, 2021, 21(5):140-147.
[19] 耿华, 袁小林. 巨噬细胞的研究进展. 国际免疫学杂志, 2013, 36(6): 450-454.
GENG H, YUAN X L, et al. Advances in the study of macrophages. International Journal of Immunology,2013, 36(6): 450-454.
[20] WANG T T, HE C Q, et al. TNF-α and IL-6: The link between immune and bone system. Current Drug Targets-The International Journal for Timely in-depth Reviews on Drug Targets, 2020, 21(3): 213-227.
[21] 谌淑平, 李明智, 董楠, 等. 不同食用菌多糖复配物对RAW264.7巨噬细胞的免疫调节作用. 食品工业科技, 2021, 42(17): 366-372.
CHEN S P, LI M Z, DONG N, et al. Immunomodulatory effects of polysaccharides from different edible fungi on RAW264.7 macrophages. Science and Technology of Food Industry, 2021, 42(17): 366-372.
[22] GAO R C, SHU W H, SHEN Y, et al. Peptide fraction from sturgeon muscle by pepsin hydrolysis exerts anti-inflammatory effects in LPS-stimulated RAW264.7 macrophages via MAPK and NF-κB pathways. Food Science and Human Wellness, 2021, 10(1): 103-111.
[23] ABUBAKAR S D, LHIM S A, FARSHCHI A, et al. The role of TNF-α and anti-TNF-α agents in the immunopathogenesis and management of immune dysregulation in primary immunodeficiency diseases. Immunopharmacology and Immunotoxicology, 2022, 44(2): 147-156.
[24] AJA-PEREZ I, STÉPHANIE K, HORNEDO-ORTEGA R, et al. Stilbenes at low micromolar concentrations mitigate the NO, TNF-α, IL-1β and ROS production in LPS-stimulated murine macrophages. Journal of Biologically Active Products from Nature, 2021, 11(3): 212-222.
[25] 叶盛旺, 杨最素, 李维, 等. 青蛤酶解多肽对RAW264.7巨噬细胞的免疫调节作用. 食品科学, 2019,40(7):185-191.
YE S W, YANG Z S, LI W, et al. Immunomodulatory effects of peptides hydrolyzed from cyclina sinensis on RAW264.7 macrophages . Food Science, 2019, 40(7): 185-191.
[26] CHAI Y S, CHEN Y Q, LIN S H, et al. Curcumin regulates the differentiation of naïve CD4+T cells and activates IL-10 immune modulation against acute lung injury in mice. Biomedicine & Pharmacotherapy, 2020, 125: 109946.
[27] HWANG D, KANG M G, JO M J, et al. Anti-inflammatory activity of β-thymosin peptide derived from pacific Oyster (Crassostrea gigas) on NO and PGE2 production by down-regulating NF-κB in LPS-induced RAW264.7 macrophage Cells. Marine Drugs, 2019, 17(2): 129.
[28] LI W, YE S W, ZHANG Z W, et al. Purification and characterization of a novel pentadecapeptide from protein hydrolysates of Cyclina sinensis and its immunomodulatory effects on RAW264.7 Cells. Marine Drugs, 2019, 17(1): 30.
[29] GUO H K, LI M, LIU H M, et al. Selenium-rich yeast peptide fraction ameliorates imiquimod-induced psoriasis-like dermatitis in mice by inhibiting inflammation via MAPK and NF-κB signaling pathways. International Journal of Molecular Sciences, 2022, 23(4): 2112-2112.
[30] YUE Y Y, LIU X C, LI Y, et al. The role of TLR4/MyD88/NF-κB pathway in periodontitis-induced liver inflammation of rats. Oral diseases, 2021, 27(4): 1012-1021.
[31] YANG L Y, ZHENG W W, XIN S Y, et al. MicroRNA-122 regulates NF-κB signaling pathway by targeting IκBα in miiuy croaker, Miichthys miiuy. Fish & Shellfish Immunology, 2022, 122: 345-351.
文章导航

/