研究报告

基于非靶向代谢组学分析辣木叶发酵前后营养物质及代谢物变化

  • 李曦明 ,
  • 温燕龙 ,
  • 杨雪莹 ,
  • 刘昱辉 ,
  • 李凌飞 ,
  • 田洋
展开
  • 1(云南农业大学 食品科学技术学院,云南 昆明,650201)
    2(国家辣木加工技术研发专业中心(云南农业大学),云南 昆明,650201)
    3(普洱学院,云南 普洱,665000)
第一作者:硕士研究生(李凌飞教授和田洋教授为共同通信作者,E-mail:lingfeili@163.com;tianyang1208@163.com)

收稿日期: 2023-02-18

  修回日期: 2023-04-12

  网络出版日期: 2024-01-02

基金资助

国家木薯产业技术体系辣木产品加工岗位项目(CARS-11-YNTY);云南省重大科技专项计划项目(202002AA100005,202102AE090027-2);云南省万人计划产业技术领军人才项目(YNWR-CYJS-2020-010)

Nutrient and metabolite changes before and after fermentation of Moringa oleifera leaves based on non-targeted metabolomics

  • LI Ximing ,
  • WEN Yanlong ,
  • YANG Xueying ,
  • LIU Yuhui ,
  • LI Lingfei ,
  • TIAN Yang
Expand
  • 1(College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China)
    2(National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming 650201, China)
    3(Pu'er University, Pu'er 665000, China)

Received date: 2023-02-18

  Revised date: 2023-04-12

  Online published: 2024-01-02

摘要

发酵是提高食品原料营养价值的重要方法之一。该研究以辣木叶为材料,探究辣木叶乳酸菌发酵对蛋白质、黄酮、多酚、多糖等营养及功能成分及抗氧化活性的影响,并采用非靶标代谢组学技术探讨辣木叶发酵前后代谢物的变化。结果表明,发酵10 d后辣木叶蛋白质含量增加了16.12%,黄酮含量提高2.1%,多酚含量提高16.35%,多糖含量提高42%。但辣木叶的抗氧化活性没有显著变化。此外,发酵后鉴定到96种差异代谢物,其中52种上调,44种下调。经代谢通路分析得到5条关键代谢通路,这些代谢途径与氨基酸类物质的代谢以及黄酮类、生物碱类等物质的生物合成有关,表明乳酸菌发酵对辣木叶营养物质的形成、生物活性的提高具有积极作用。研究结果为乳酸菌发酵辣木叶的代谢物鉴定提供理论依据,也为研发辣木叶功能食品提供理论参考。

本文引用格式

李曦明 , 温燕龙 , 杨雪莹 , 刘昱辉 , 李凌飞 , 田洋 . 基于非靶向代谢组学分析辣木叶发酵前后营养物质及代谢物变化[J]. 食品与发酵工业, 2023 , 49(23) : 105 -110 . DOI: 10.13995/j.cnki.11-1802/ts.035192

Abstract

Fermentation is a crucial technique for enhancing the nutritional value of food materials. This study investigated the impact of Lactobacillus plantarum fermentation on the contents of Moringa oleifera leaves, including proteins, flavonoids, polyphenols, and polysaccharides, as well as its antioxidant activity. Non-target metabolomics technology was utilized to analyze the changes in metabolites of M. oleifera leaves before and after fermentation. The findings indicated that after ten days of fermentation, the protein content of M. oleifera leaves increased by 16.12%, flavonoid content by 2.1%, polyphenol content by 16.35%, and polysaccharide content by 42%. However, there was no significant change in the antioxidant activity. Furthermore, the study identified a total of 96 differential metabolites post-fermentation, including 52 up-regulated and 44 down-regulated metabolites. Metabolic pathway analysis revealed five key metabolic pathways, primarily associated with amino acid metabolism and biosynthesis of flavonoids, alkaloids, and other substances. These findings demonstrated that L. plantarum fermentation has a positive impact on the formation of nutrients and the enhancement of biological activity of M. oleifera leaves. Consequently, the results provide a theoretical foundation for identifying metabolites of fermented M. oleifera leaves by Lactobacillus and offer a theoretical reference for developing functional foods from M. oleifera leaves.

参考文献

[1] WANG F, BAO Y F, ZHANG C, et al.Bioactive components and anti-diabetic properties of Moringa oleifera Lam[J].Critical Reviews in Food Science and Nutrition, 2022, 62(14):3873-3897.
[2] 郭刚军, 胡小静, 徐荣, 等.辣木叶茶4种发酵方式不同发酵阶段化学成分与品质变化及其相关性分析[J].食品工业科技, 2021, 42(19):267-274.
GUO G J, HU X J, XU R, et al.Changes and correlations of chemical components and quality of Moringa oleifera leaf tea at different stages of four fermentation methods[J].Science and Technology of Food Industry, 2021, 42(19):267-274.
[3] DWIVEDI P, AGNIHOTRI A K, SHARMA S C.Moringa Oleifera: A plant with multiple medicinal uses[J].Chemical Weekly, 2007, 53(13):191-197.
[4] KASHYAP P, KUMAR S, RIAR C S, et al.Recent advances in drumstick (Moringa oleifera) leaves bioactive compounds:Composition, health benefits, bioaccessibility, and dietary applications[J].Antioxidants, 2022, 11(2):402.
[5] KHOR K Z, LIM V, MOSES E J, et al.The in vitro and in vivo anticancer properties of Moringa oleifera[J].Evidence-Based Complementary and Alternative Medicine, 2018, 2018:1-14.
[6] HASSAN M A, XU T, TIAN Y, et al.Health benefits and phenolic compounds of Moringa oleifera leaves:A comprehensive review[J].Phytomedicine, 2021, 93:153771.
[7] ABDULL RAZIS A F, IBRAHIM M D, KNTAYYA S B.Health benefits of Moringa oleifera[J].Asian Pacific Journal of Cancer Prevention, 2014, 15(20):8571-8576.
[8] SHI H H, SU B, CHEN X Y, et al.Solid state fermentation of Moringa oleifera leaf meal by mixed strains for the protein enrichment and the improvement of nutritional value[J].PeerJ, 2020, 8:e10358.
[9] CUI Y Y, LI J Z, DENG D, et al.Solid-state fermentation by Aspergillus niger and Trichoderma koningii improves the quality of tea dregs for use as feed additives[J].PLoS One, 2021, 16(11):e0260045.
[10] XIE P J, HUANG L X, ZHANG C H, et al.Nutrient assessment of olive leaf residues processed by solid-state fermentation as an innovative feedstuff additive[J].Journal of Applied Microbiology, 2016, 121(1):28-40.
[11] SHI C Y, HE J, YU J, et al.Solid state fermentation of rapeseed cake with Aspergillus niger for degrading glucosinolates and upgrading nutritional value[J].Journal of Animal Science and Biotechnology, 2015, 6(1):1-7.
[12] 张云娟, 田洋, 周学, 等.辣木叶毛霉固态发酵过程中主要营养成分及其抗氧化活性的动态变化研究[J].西南农业学报, 2019, 32(8):1773-1778.
ZHANG Y J, TIAN Y, ZHOU X, et al.Dynamic changes of main nutrients and antioxidant activities of Moringa oleifera leaves during solid state fermentation of Mucor[J].Southwest China Journal of Agricultural Sciences, 2019, 32(8):1773-1778.
[13] NAVEED M, HEJAZI V, ABBAS M, et al.Chlorogenic acid (CGA):A pharmacological review and call for further research[J].Biomedicine & Pharmacotherapy, 2018, 97:67-74.
[14] LU H J, TIAN Z M, CUI Y Y, et al.Chlorogenic acid:A comprehensive review of the dietary sources, processing effects, bioavailability, beneficial properties, mechanisms of action, and future directions[J].Comprehensive Reviews in Food Science and Food Safety, 2020, 19(6):3130-3158.
[15] CHEN F, ZHANG H, ZHAO N, et al.Effect of chlorogenic acid on intestinal inflammation, antioxidant status, and microbial community of young hens challenged with acute heat stress[J].Animal Science Journal, 2021, 92(1), e13619.
[16] ZHANG J, LIU Y J, LIU L J.Hyperoside prevents sepsis-associated cardiac dysfunction through regulating cardiomyocyte viability and inflammation via inhibiting miR-21[J].Biomedicine & Pharmacotherapy, 2021, 138:111524.
[17] 张馨予, 苏建青, 褚秀玲.金丝桃苷-环糊精包合物的制备及其抗氧化活性研究[J].动物营养学报, 2022, 34(8):5426-5440.
ZHANG X Y, SU J Q, CHU X L.Preparation of hyperoside-cyclodextrin inclusion complex and its biological antioxidant activity[J].Chinese Journal of Animal Nutrition, 2022, 34(8):5426-5440.
[18] HUANG J Z, TONG X A, ZHANG L, et al.Hyperoside attenuates bleomycin-induced pulmonary fibrosis development in mice[J].Frontiers in Pharmacology, 2020, 11:550955.
[19] GUO X, ZHU C Z, LIU X J, et al.Hyperoside protects against heart failure-induced liver fibrosis in rats[J].Acta Histochemica, 2019, 121(7):804-811.
[20] 陈世春, 徐永祥, 韩伟超, 等.紫云英苷的药理特性及其作用机制研究进展[J].中华中医药学刊, 2022, 40(11):118-123;287.
CHEN S C, XU Y X, HAN W C, et al.Research progress on pharmacological properties and mechanism of astragalin[J].Chinese Archives of Traditional Chinese Medicine, 2022, 40(11):118-123;287.
文章导航

/