研究报告

不同分子质量虾源壳寡糖的抗菌抗氧化活性差异研究

  • 罗威 ,
  • 黄晓月 ,
  • 钟萍 ,
  • 陈斯琪 ,
  • 区家豪 ,
  • 房志家 ,
  • 邓旗 ,
  • 孙力军 ,
  • 王雅玲
展开
  • 1(岭南师范学院 基础教育学院,广东 湛江,524084)
    2(湛江幼儿师范专科学校,广东 湛江,524084)
    3(广东海洋大学 食品科技学院,广东 湛江,524088)
    4(广东省江门市质量计量监督检测所,广东 江门,529000)
第一作者:罗威(硕士,副教授)和黄晓月(硕士)为共同第一作者(王雅玲教授为通信作者,E-mail:wangylchina@163.com)

收稿日期: 2022-09-20

  修回日期: 2023-02-11

  网络出版日期: 2024-01-17

基金资助

广东省普通高校特色创新类项目(2021KTSCX322);广东省现代农业产业技术创新团队项目虾蟹团队(2023KJ149)

Antibacterial and antioxidant activities of shrimp-derived chitosan oligosaccharides with different molecular weights

  • LUO Wei ,
  • HUANG Xiaoyue ,
  • ZHONG Ping ,
  • CHEN Siqi ,
  • OU Jiahao ,
  • FANG Zhijia ,
  • DENG Qi ,
  • SUN Lijun ,
  • WANG Yaling
Expand
  • 1(College of Basic Education, Lingnan Normal University, Zhanjiang 524084, China)
    2(Zhanjiang Preschool Education College, Zhanjiang 524084, China)
    3(College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China)
    4(Guangdong Jiangmen Supervision Testing Institute of Quality & Metrology, Jiangmen 529000, China)

Received date: 2022-09-20

  Revised date: 2023-02-11

  Online published: 2024-01-17

摘要

为明确虾源壳寡糖的抗菌抗氧化活性与其数均分子质量之间的相关性,该研究采用乙醇分级沉淀法分离虾源壳聚糖酶解物,得到4种不同分子质量的壳寡糖产品(COS50、COS60、COS70、COS70 s),数均分子质量分别为2 365、2 807、3 105、1 390 Da。比较4种壳寡糖产品的抑菌抗氧化活性,发现COS50(数均分子质量为2 362 Da)对大肠杆菌、枯草杆菌、金黄色葡萄球菌、假单胞菌和希瓦氏菌均有较强的抑菌效果,对上述各种菌的最低抑菌浓度(minimal inhibitory concentration,MIC)值分别为2.50、1.25、1.25、0.62、0.16 mg/mL;壳寡糖的抗氧化能力整体上随着数均分子质量的增加而减弱,COS50清除DPPH自由基的能力最强,清除自由基一半所需浓度(IC50)为0.90 mg/mL,COS70 s的总还原力最强(每克相当于9.87 mg抗坏血酸的还原力),COS50次之。综合考虑抗菌抗氧化活性,COS50(数均分子质量为2 362 Da)为具备抗菌抗氧化性能的最优壳寡糖。该研究为虾源壳寡糖的开发应用提供理论参考。

本文引用格式

罗威 , 黄晓月 , 钟萍 , 陈斯琪 , 区家豪 , 房志家 , 邓旗 , 孙力军 , 王雅玲 . 不同分子质量虾源壳寡糖的抗菌抗氧化活性差异研究[J]. 食品与发酵工业, 2023 , 49(24) : 193 -197 . DOI: 10.13995/j.cnki.11-1802/ts.033713

Abstract

To clarify the correlation between the antibacterial and antioxidant activities of shrimp-derived chitosan oligosaccharide and their average molecular weight, this study used ethanol fractional precipitation method to separate shrimp-derived chitosan hydrolysate, and obtained four chitosan oligosaccharide (COS50, COS60, COS70, COS70 s) with the average molecular weight of 2 365, 2 807, 3 105, 1 390 Da, respectively. The antibacterial and antioxidant activities of the four chitosan oligosaccharides were compared. It was found that COS50 (the average molecular weight of 2 362 Da) had strong antibacterial effects on Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Pseudomonas, and Shewanella, and the minimum inhibitory concentration (MIC) for the above-mentioned bacteria were 2.50, 1.25, 1.25, 0.62, 0.16 mg/mL, respectively. Overall, the antioxidant activity of chitosan oligosaccharides decreased with the increase of molecular weight. COS50 had the strongest ability to scavenge DPPH radicals with IC50 of 0.90 mg/mL. COS70s had the strongest total reducing power (equivalent to 9.87 milligram ascorbic acid per g), followed by COS50. Therefore, considering the antibacterial and antioxidant activities, COS50 (average molecular weight of 2 362 Da) was the optimal chitosan oligosaccharide. This study provides a theoretical reference for the development and application of shrimp-derived chitosan oligosaccharide.

参考文献

[1] 黄晓月, 毕思远, 区家豪, 等.木瓜蛋白酶法制备抗氧化活性壳寡糖的工艺优化[J].生物学杂志, 2022, 39(1):104-109.
HUANG X Y, BI S Y, OU J H, et al.Process optimization of preparation of antioxidant chitooligosaccharides by papain[J].Journal of Biology, 2022, 39(1):104-109.
[2] KHOUSHAB F, YAMABHAI M.Chitin research revisited[J].Marine Drugs, 2010, 8(7):1988-2012.
[3] NAVEED M, PHIL L, SOHAIL M, et al.Chitosan oligosaccharide (COS):An overview[J].International Journal of Biological Macromolecules, 2019, 129:827-843.
[4] BENCHAMAS G, HUANG G L, HUANG S Y, et al.Preparation and biological activities of chitosan oligosaccharides[J].Trends in Food Science & Technology, 2021, 107:38-44.
[5] HUANG J, ZHAO D K, HU S, et al.Biochemical activities of low molecular weight chitosans derived from squid pens[J].Carbohydrate Polymers, 2012, 87(3):2231-2236.
[6] YUAN X B, ZHENG J P, JIAO S M, et al.A review on the preparation of chitosan oligosaccharides and application to human health, animal husbandry and agricultural production[J].Carbohydrate Polymers, 2019, 220:60-70.
[7] ABD EL-HACK M E, EL-SAADONY M T, SHAFI M E, et al.Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications:A review[J].International Journal of Biological Macromolecules, 2020, 164:2726-2744.
[8] 高晓冉, 刘程惠, 陈立国, 等.壳寡糖与茶多酚复合保鲜剂对冷鲜牛肉的保鲜效果[J].食品与发酵工业, 2019, 45(11):172-178.
GAO X R, LIU C H, CHEN L G, et al.Preservative effects of chitosan oligosaccharide and tea polyphenol together on chilled beef[J].Food and Fermentation Industries, 2019, 45(11):172-178.
[9] 舒德海, 钱俊青, 吴薇.过氧化氢制备壳寡糖的工艺[J].食品与发酵工业, 2009, 35(6):121-125.
SHU D H, QIAN J Q, WU W.The oxidation method to prepare chitosan oligosaccharide[J].Food and Fermentation Industries, 2009, 35(6):121-125.
[10] 孙婷. 纤维素酶降解壳聚糖的研究[D].无锡:江南大学, 2009.
SUN T.Studies on the depolymerization of chitosan by cellulase[D].Wuxi:Jiangnan University, 2009.
[11] 张青. 蝇蛆壳寡糖的制备及其性能研究[D].广州:华南理工大学, 2018.
ZHANG Q.Preparation and performance research of chito-oligosaccharides from fly maggot[D].Guangzhou:South China University of Technology, 2018.
[12] SÁNCHEZÁ, MENGÍBAR M, RIVERA-RODRÍGUEZ G, et al.The effect of preparation processes on the physicochemical characteristics and antibacterial activity of chitooligosaccharides[J].Carbohydrate Polymers, 2017, 157:251-257.
[13] LI K C, XING R E, LIU S, et al.Separation of chito-oligomers with several degrees of polymerization and study of their antioxidant activity[J].Carbohydrate Polymers, 2012, 88(3):896-903.
[14] 陈全毅. 海洋源抗菌活性乳酸菌筛选与细菌素分离及对单增李斯特菌作用效应的研究[D].湛江:广东海洋大学, 2021.
CHEN Q Y.Screening of marine source antimicrobial active lactic acid bacteria and bacteriocin isolation and their effects on Listeria monocytogenes[D].Zhanjiang:Guangdong Ocean University, 2021.
[15] 贾爱荣, 张永刚, 夏雪奎, 等.不同处理方法对中国明对虾贮藏中腐败微生物的影响[J].食品工业, 2015, 36(9):96-100.
JIA A R, ZHANG Y G, XIA X K, et al.Effects of different approaches on spoilage microorganisms in Chinese shrimp (Fenneropenaeus chinensis) during storage[J].The Food Industry, 2015, 36(9):96-100.
[16] 王新. 灵芝多糖的提取及抗氧化活性研究[D].镇江:江苏大学, 2007.
WANG X.Study on extraction and antioxidation of polysaccharide from Ganoderma lucidum[D].Zhenjiang:Jiangsu University, 2007.
[17] AFFES S, ARANAZ I, HAMDI M, et al.Preparation of a crude chitosanase from blue crab viscera as well as its application in the production of biologically active chito-oligosaccharides from shrimp shells chitosan[J].International Journal of Biological Macromolecules, 2019, 139:558-569.
[18] LIAQAT F, ELTEM R.Chitooligosaccharides and their biological activities:A comprehensive review[J].Carbohydrate Polymers, 2018, 184:243-259.
[19] 周萌. 壳聚糖的氧化降解及壳寡糖的分离纯化[D].广州:华南理工大学, 2013.
ZHOU M.The oxidative degradation of chitosan and the purification of oligochitosan[D].Guangzhou:South China University of Technology, 2013.
[20] 杨焕蝶, 张翔, 亚历山大·苏沃洛夫, 等.壳聚糖与壳寡糖抑菌保鲜研究进展[J].山东农业科学, 2020, 52(2):167-172.
YANG H D, ZHANG X, ALEXANDER S, et al.Research progress of chitosan and chitooligosaccharide in bacteriostasis and preservation[J].Shandong Agricultural Sciences, 2020, 52(2):167-172.
[21] ZOU P, YANG X, WANG J, et al.Advances in characterisation and biological activities of chitosan and chitosan oligosaccharides[J].Food Chemistry, 2016, 190:1174-1181.
文章导航

/