研究报告

射频技术处理糙米自由基与脂肪酶的作用效果研究

  • 王岚峰 ,
  • 史锋 ,
  • 黄金荣 ,
  • 李永富
展开
  • 1(江南大学,粮食发酵与食品生物制造国家工程研究中心,江苏 无锡,214122)
    2(江南大学,江南大学食品科学与技术国家重点实验室,江苏 无锡,214122)
    3(江苏省生物活性制品加工工程技术研究中心,江苏 无锡,214122)
第一作者:硕士研究生(李永富副教授为通信作者,E-mail:liyf@jiangnan.edu.cn)

收稿日期: 2023-03-09

  修回日期: 2023-04-04

  网络出版日期: 2024-03-15

基金资助

:“十三五”国家重点研发计划重点专项(2018YFD0400501)

Effect of radio frequency technology on free radicals and lipase of brown rice

  • WANG Lanfeng ,
  • SHI Feng ,
  • HUANG Jinrong ,
  • LI Yongfu
Expand
  • 1(School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Wuxi 214122, China)
    2(State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China)
    3(Engineering Research Center for Bioactive Products Processing Technology of Jiangsu Province, Jiangnan University, Wuxi 214122, China)

Received date: 2023-03-09

  Revised date: 2023-04-04

  Online published: 2024-03-15

摘要

采用射频技术适度灭活糙米脂肪酶并控制自由基强度,改善其贮藏稳定性。考察极板间距、温度、补水率及保温时间等因素对糙米脂肪酶灭活率和自由基强度的影响,通过正交实验分别得到最高脂肪酶灭活率和最低自由基强度的工艺参数,最终通过对比2个最优工艺参数条件下处理的糙米和未处理糙米在37 ℃下贮藏28 d过程中的变化,用以分析射频处理对糙米贮藏稳定性的改善效果。通过单因素和正交实验,得到了脂肪酶灭活率最高(样品Ⅰ)的最佳加工参数:极板间距145 mm、温度105 ℃、补水率4.5%;自由基强度最低(样品Ⅱ):极板间距145 mm、温度95 ℃、补水率4.5%,得到的样品Ⅰ和样品Ⅱ的脂肪酶灭活率分别为62.65%和41.77%,而自由基强度分别为0.891和0.699。在加速贮藏期间,样品Ⅰ和样品Ⅱ的脂肪酸峰值分别为22.42、24.00 mg/100 g,均处于<25 mg/100 g的稻谷宜存品质范围内,而对照样品峰值为33.17 mg/100 g,已经超标;样品Ⅱ的过氧化值峰值浓度低于样品Ⅰ与未处理样品,且在可接受范围内。贮藏期间,射频处理的2个糙米样品自由基强度呈增加趋势,在射频样品中以样品Ⅱ的自由基强度峰值最低,此外,样品Ⅱ的己醛峰值浓度也较低,且多不饱和脂肪酸的氧化速率最慢。在控制自由基强度的前提下,适度灭活糙米脂肪酶能够改善糙米的贮藏稳定性,仅追求较高脂肪酶灭活率而忽略自由基强度增加并不能改善糙米贮藏稳定性。

本文引用格式

王岚峰 , 史锋 , 黄金荣 , 李永富 . 射频技术处理糙米自由基与脂肪酶的作用效果研究[J]. 食品与发酵工业, 2024 , 50(4) : 59 -67 . DOI: 10.13995/j.cnki.11-1802/ts.035433

Abstract

This study aimed to inactivate brown rice lipase and control the free radical intensity by radio frequency (RF) technology to improve its storage stability. The effects of electrode gap, temperature, water supplementation rate, and incubating time on lipase inactivation rate and free radical intensity of brown rice were investigated, and the optimal processing parameters for the highest lipase inactivation rate and the lowest free radical intensity were obtained by orthogonal experiments, respectively. Finally, the effect of RF treatment on the storage stability of brown rice was analyzed by comparing the changes of two RF-treated brown rice samples under optimal processing parameters and one untreated brown rice sample during 28-day storage at 37 °C. Results showed that the best processing parameters with the highest lipase inactivation rate (sample I) were obtained by single factor and orthogonal experiments, which were an electrode gap of 145 mm, temperature of 105 ℃, and water supplementation rate of 4.5%. The best processing parameters with the lowest free radical intensity (sample Ⅱ) were an electrode gap of 145 mm, temperature of 95 ℃, and water supplementation rate of 4.5%. The lipase inactivation rate of the resulting sample Ⅰ and sample Ⅱ were 62.65% and 41.77%, respectively, while the free radical intensities were 0.891 and 0.699, respectively. During accelerated storage, the peak fatty acids value of samples Ⅰ and Ⅱ were 22.42 and 24.00 mg/100 g, respectively, both were within the suitable storage quality range of <25 mg/100 g of rice, while the peak fatty acids value of the untreated sample was 33.17 mg/100 g, which exceeded the standard. The peak peroxide value of sample Ⅱ was lower than those of sample Ⅰ and the untreated sample, and it was within the acceptable range. During the storage period, the free radical intensity of two brown rice samples treated with RF showed an increasing trend, and the free radical intensity of sample Ⅱ was the lowest in the samples treated with RF. Furthermore, the final hexanal concentration of sample Ⅱ was lower than that of sample Ⅰ, and the polyunsaturated fatty acids of sample Ⅱ had the slowest oxidation rate. Moderate inactivation of lipase under the control of free radical intensity could improve the storage stability of brown rice, while merely enhancing the lipase inactivation but neglecting the increase of free radical intensity could not improve the storage stability of brown rice.

参考文献

[1] 吕呈蔚, 岳玉兰, 王政, 等.糙米营养价值及加工技术研究进展[J].粮油食品科技, 2020, 28(6):140-144.
LYU C Y, YUE Y L, WANG Z, et al.Research progress on the nutritional value and processing technology of brown rice[J].Science and Technology of Cereals, Oils and Foods, 2020, 28(6):140-144.
[2] 王新伟, 李蕊, 陈聪聪, 等.储藏过程中小麦粉酸败的研究进展[J].食品工业, 2019, 40(10):253-257.
WANG X W, LI R, CHEN C C, et al.A reuiew of rancidity of wheat flour during storage[J].The Food Industry, 2019, 40(10):253-257.
[3] 胡博, 范大明, 乌斯嘎勒, 等.微波致米蛋白的自由基生成及氧化特性研究[J].现代食品科技, 2015, 31(4):151-156.
HU B, FAN D M, WU S G L, et al.The radical production and oxidative properties of rice protein under microwave radiatio[J].Modern Food Science & Technology, 2015, 31(4):151-156.
[4] LI Y L, LI F, TANG J M, et al.Radio frequency tempering uniformity investigation of frozen beef with various shapes and sizes[J].Innovative food science & emerging technologies, 2018, 48:42-55.
[5] CHEN L, SUBBIAH J, JONES D, et al.Development of effective drying strategy with a combination of radio frequency (RF) and convective hot-air drying for inshell hazelnuts and enhancement of nut quality[J].Innovative Food Science & Emerging Technologies, 2021, 67:102555.
[6] ZHOU X, WANG S J.Recent developments in radio frequency drying of food and agricultural products:A review[J].Drying Technology, 2019, 37(3):271-286.
[7] MAO Y X, WANG P H, WU Y, et al.Effects of various radio frequencies on combined drying and disinfestation treatments for in-shell walnuts[J].LWT, 2021, 144:111246.
[8] LING B, LYNG J G, WANG S J.Effects of hot air-assisted radio frequency heating on enzyme inactivation, lipid stability and product quality of rice bran[J].LWT, 2018, 91:453-459.
[9] 张晶晶. 薏仁米脂肪酶射频灭活效果及贮藏稳定性研究[D].无锡:江南大学, 2021.
ZHANG J J.Radio frequency inactivation effect and storage stability of coix rice lipase[D].Wuxi:Jiangnan University, 2021.
[10] 李永富, 王雪真, 黄金荣, 等.基于自由基控制的青稞脂肪酶射频灭活技术研究[J].中国粮油学报, 2022, 37(7):46-54.
LI Y F, WANG X Z,HUANG J R,et al.Radio frequency for lipase inactivation of highland barely based on free radicals control[J].Journal of the Chinese Cereals and Oils Association, 2022, 37(7):46-54.
[11] BARBA F J, ROOHINEJAD S, ISHIKAWA K, et al.Electron spin resonance as a tool to monitor the influence of novel processing technologies on food properties[J].Trends in Food Science & Technology, 2020, 100:77-87.
[12] MEXIS S F, KONTOMINAS M G.Effect of oxygen absorber, nitrogen flushing, packaging material oxygen transmission rate and storage conditions on quality retention of raw whole unpeeled almond kernels (Prunus dulcis)[J].LWT-Food Science and Technology, 2010, 43(1):1-11.
[13] 李诗炜. 熟化谷物粉在储藏过程中的氧化及其评价指标分析[D].无锡:江南大学, 2017.
LI S W.Analysis of oxidation and evaluation indexes of instant cereal flours during storage[D].Wuxi:Jiangnam University, 2017.
[14] 周良付, 雷玉洁, 李宇坤, 等.多酚氧化酶的射频加热灭活效果及动力学分析[J].现代食品科技, 2016, 32(9):161-166.
ZHOU L F, LEI Y J, LI Y K, et al.Inactivation effect of radio frequency heating on polyphenol oxidase and the analysis of kinetics[J].Modern Food Science and Technology, 2016, 32(9):161-166.
[15] WANG S, TIWARI G, JIAO S, et al.Developing postharvest disinfestation treatments for legumes using radio frequency energy[J].Biosystems Engineering, 2010, 105(3):341-349.
[16] VEARASILP S, THOBUNLUEPOP P, THANAPORNPOONPONG S-N, et al.Radio frequency heating on lipid peroxidation, decreasing oxidative stress and aflatoxin B1 reduction in Perilla frutescens L.highland oil seed[J].Agriculture and Agricultural Science Procedia, 2015, 5:177-183.
[17] BOLUMAR T, SKIBSTED L H, ORLIEN V.Kinetics of the formation of radicals in meat during high pressure processing[J].Food Chemistry, 2012, 134(4):2114-2120.
[18] 杨晓清, 赵丽贞, 高爱武, 等.水分调节对原料米糠微波稳定化的增效作用[J].食品工业科技, 2018, 39(23):169-174;181.
YANG X Q, ZHAO L Z,GAO A W, et al.Synergistic effect of moisture regulation on rice bran stabilization by microwave heating[J].Science and Technology of Food Industry, 2018, 39(23):169-174;181.
[19] CHAMPAGNE E T, HRON R J, ABRAHAM G.Utilizing ethanol to produce stabilized brown rice products[J].Journal of the American Oil Chemists Society, 1992, 69(3):205-208.
[20] LING B, LYNG J G, WANG S J.Radio-frequency treatment for stabilization of wheat germ:Dielectric properties and heating uniformity[J].Innovative Food Science and Emerging Technologies, 2018, 48:66-74.
[21] DUTTA BANIK S, NORDBLAD M, WOODLEY J M, et al.Effect of water clustering on the activity of Candida antarctica lipase B in organic medium[J].Catalysts, 2017, 7(8):227.
[22] 敖敦格日乐, 杨体强, 包斯琴高娃, 等.电场对脂肪酶二级结构及其活性的影响[J].食品与生物技术学报, 2015, 34(12):1256-1261.
AO D G R L, YANG T Q, BAO S Q G W, et al.Study on the effect of electric field on the secondary structure and activity of lipase[J].Journal of Food Science and Biotechnology, 2015, 34(12):1256-1261.
[23] 周颖, 杨震, 郭晓娜, 等.过热蒸汽对燕麦挂面储藏稳定性及风味的影响[J].中国粮油学报, 2022, 37(2):54-61.
ZHOU Y, YANG Z, GUO X N, et al.Effects of superheated steam treatment on storage stability and flavor of dried oat noodles[J].Journal of the Chinese Cereals and Oils Association, 2022, 37(2):54-61.
[24] 黄倩, 郭晓娜, 朱科学, 等.小麦粉加工精度对挂面储藏期间脂质稳定性的影响[J].中国粮油学报,2020, 35(11):111-118.
HUANG Q, GUO X N, ZHU K X, et al. Effects of wheat flour processing degree on lipid stability of dried noodles during storage[J].Journal of the Chinese Cereals and Oils Association, 2020, 35(11):111-118.
[25] 龚东平, 胡耀池, 张红漫, 等.游离脂肪酸对DHA油脂氧化稳定性的影响[J].食品与发酵工业, 2010, 36(11):30-33.
GONG D P, HU Y C, ZHANG H M, et al.Effect of free fatty acid on the oxidative stability of DHA oil[J].Food and Fermentation Industries, 2010, 36(11):30-33.
[26] 林露芬, 胡博, 高艺书, 等.微波处理对糙米制粉多样产物的自由基水平及贮藏稳定性的影响[J].食品与发酵工业, 2016, 42(8):81-86.
LIN L F, HU B, GAO Y S, et al.The influence of microwave irradiation on the thermal radical generation and storage behavior of the product of brown rice powder process[J].Food and Fermentation Industries, 2016, 42(8):81-86.
[27] LEHTINEN P, KIILIÄINEN K, LEHTOMÄKI I, et al.Effect of heat treatment on lipid stability in processed oats[J].Journal of Cereal Science, 2003, 37(2):215-221.
[28] WANG X Z, LI Y F, SHI F, et al.Optimization of radio frequency heating protocols based on free radical control to improve the storage stability of highland barley[J].Journal of Cereal Science, 2022, 108:103558.
文章导航

/