研究报告

不同种植方式大米中碳氮同位素比率与矿质元素特征及加工影响

  • 刘亦鸣 ,
  • 李春霖 ,
  • 张卫星 ,
  • 聂晶 ,
  • 张永志 ,
  • 许凤 ,
  • 袁玉伟
展开
  • 1(宁波大学 食品与药学学院,浙江 宁波,315211)
    2(浙江省农业科学院 农产品质量安全与营养研究所,浙江 杭州,310021)
    3(农业农村部农产品信息溯源重点实验室,浙江 杭州,310021)
    4(中国水稻研究所,浙江 杭州,310006)
第一作者:硕士研究生(许凤教授和袁玉伟研究员为共同通信作者,E-mail:xufeng1@nbu.edu.cn;ywytea@163.com)

收稿日期: 2022-10-31

  修回日期: 2022-12-12

  网络出版日期: 2024-03-15

基金资助

浙江省基础公益研究计划(LGJ20C200003);国际原子能机构协调研究项目(23322);浙江省农业科学院产地溯源学科建设财政专项(2022)

Characteristics of carbon and nitrogen isotope ratios and mineral elements in rice under different cultivation and effects of processing

  • LIU Yiming ,
  • LI Chunlin ,
  • ZHANG Weixing ,
  • NIE Jing ,
  • ZHANG Yongzhi ,
  • XU Feng ,
  • YUAN Yuwei
Expand
  • 1(School of Food and Pharmacy, Ningbo University, Ningbo 315211, China)
    2(Institute of Quality Safety and Nutrition of Agricultural Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China)
    3(Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture, Hangzhou 310021, China)
    4(China National Rice Research Institute, Hangzhou 310006, China)

Received date: 2022-10-31

  Revised date: 2022-12-12

  Online published: 2024-03-15

摘要

为探究不同种植方式大米稳定同位素特征指标与矿质元素差异,该研究利用元素分析-同位素质谱仪和电感耦合等离子体质谱仪分析,研究有机、绿色和常规种植方式下糙米与精米δ13C、δ15N与11种矿质元素变化。结果表明,精米δ13C、δ15N分布分别为-27.7‰~-26.9‰和3.7‰~4.9‰,糙米δ13C、δ15N分布分别为-27.8‰~-26.9‰和3.4‰~4.7‰。精米δ13C在有机和绿色栽培下差异显著,δ15N在绿色与常规栽培下差异显著,Na、Mg、K、Mo元素存在显著性差异;糙米δ13C和δ15N在各栽培条件下均无显著差异,K、Mn元素存在显著性差异。糙米加工成精米后,有机大米中矿质元素减少42%,绿色大米矿质元素损失40%,常规大米矿质元素下降54%。精米比糙米可以更好地反映稳定同位素特征,常规栽培下糙米矿质元素含量最高,绿色栽培下精米矿质元素含量最高。不同种植方式和加工制备影响大米中δ13C、δ15N、矿质元素含量,该研究为科学评价大米中矿质元素含量和指导消费提供科学依据。

本文引用格式

刘亦鸣 , 李春霖 , 张卫星 , 聂晶 , 张永志 , 许凤 , 袁玉伟 . 不同种植方式大米中碳氮同位素比率与矿质元素特征及加工影响[J]. 食品与发酵工业, 2024 , 50(4) : 178 -183 . DOI: 10.13995/j.cnki.11-1802/ts.034155

Abstract

This study aimed to explore the stable isotope characteristic indication and mineral element difference in rice with different cultivation and the effects of processing. This study used elemental analysis-isotope mass spectrometry and inductively coupled plasma mass spectrometry to research the changes of δ13C, δ15N, and 11 mineral elements in brown and polished rice under organic, green, and conventional cultivation and the effects of processing. Results showed that the δ13C and δ15N of polished rice ranged from -27.7‰ to -26.9‰ and 3.7‰ to 4.9‰, and from -27.8‰ to -26.9‰ and 3.4‰ to 4.7‰ for brown rice. The δ13C of milled rice was significantly different between organic and green cultivation, and the δ15N of milled rice was significantly different between green and conventional cultivation. There were significant differences in Na, Mg, K, and Mo elements. There was no significant difference in δ13C and δ15N of brown rice under different cultivation conditions, but there were significant differences in K and Mn. When brown rice was processed into white rice, mineral elements in organic rice were reduced by 42%, mineral elements in green rice were lost by 40%, and mineral elements in conventional rice were reduced by 54%. White rice could better reflect the characteristics of stable isotopes than brown rice. Under conventional cultivation, brown rice had the highest content of mineral elements, while under green cultivation, white rice had the highest content of mineral elements. The contents of δ13C, δ15N, and mineral elements in rice were affected by different planting methods and processing. This study provides a scientific basis for the scientific evaluation of the mineral elements in rice and guides the consumption of rice.

参考文献

[1] 张晓伟, 白牡丹, 高鹏, 等.浅谈矿质营养元素在梨树生长发育中的作用[J].南方农业, 2020, 14(30):26-27.
ZHANG X W, BAI M D, GAO P, et al.Discussion on the role of mineral nutrients in the growth and development of pear trees[J].South China Agriculture, 2020, 14(30):26-27.
[2] 蔡东明, 张军妮, 高九兰, 等.水稻营养元素促进人体健康的研究[J].农业技术与装备, 2021(3):95-96.
CAI D M, ZHANG J N, GAO J L, et al.Research on nutritive elements of rice promoting human health[J].Agricultural Technology & Equipment, 2021(3):95-96.
[3] 薛鹏, 张威毅, 张丰香, 等.元阳红米麸皮、精米、糙米、留胚米中营养成分及花色苷含量分析[J].现代食品科技, 2018, 34(3):212-217;158.
XUE P, ZHANG W Y, ZHANG F X, et al.Analysis of the nutrients and anthocyanins contents of red rice bran, polished rice, brown rice and germ-left rice from Yuanyang county[J].Modern Food Science and Technology, 2018, 34(3):212-217;158.
[4] 赵珊, 王释婕, 聂晶, 等.不同发育期及授粉方式对设施甜瓜中稳定同位素比值变化的影响研究[J].核农学报, 2021, 35(11):2542-2549.
ZHAO S, WANG S J, NIE J, et al.Variation of stable isotope ratio in greenhouse muskmelon with different pollination methods during development stages[J].Journal of Nuclear Agricultural Sciences, 2021, 35(11):2542-2549.
[5] INÁCIO C T, CHALK P M.Principles and limitations of stable isotopes in differentiating organic and conventional foodstuffs:2.Animal products[J].Critical Reviews in Food Science and Nutrition, 2017, 57(1):181-196.
[6] KATERINOPOULOU K, KONTOGEORGOS A, SALMAS C E, et al.Geographical origin authentication of agri-food products:A review[J].Foods, 2020, 9(4):489.
[7] DAWSON T E, MAMBELLI S, PLAMBOECK A H, et al.Stable isotopes in plant ecology[J].Annual Review of Ecology and Systematics, 2002, 33:507-559.
[8] 赵多勇, 李安, 郭航, 等.稳定同位素技术鉴别库尔勒香梨产地可行性研究[J].核农学报, 2020, 34(S1):37-42.
ZHAO D Y, LI A, GUO H, et al.Feasibility study on identification of Korla fragrant pear origin by stable isotope technique[J].Journal of Nuclear Agricultural Sciences, 2020, 34(S1):37-42.
[9] 谢静, 朱万泽, 周鹏, 等.贡嘎山木本植物碳同位素沿海拔梯度的变化[J].南京林业大学学报(自然科学版), 2014, 38(6):33-37.
XIE J, ZHU W Z, ZHOU P, et al.Variations in carbon isotope of the main woody plants along the elevational gradient on the Gongga Mountain[J].Journal of Nanjing Forestry University(Natural Sciences Edition), 2014, 38(6):33-37.
[10] RADABAUGH K R, MALKIN E M, HOLLANDER D J, et al.Evidence for light-environment control of carbon isotope fractionation by benthic microalgal communities[J].Marine Ecology Progress Series, 2014, 495:77-90.
[11] 李春霖, 汪秋红, 聂晶, 等.我国有机茶稳定同位素特征与δ15N标识相关性研究[J].核农学报, 2021, 35(9):2056-2064.
LI C L, WANG Q H, NIE J, et al.Characteristics of stable isotopes in Chinese organic tea and correlations with δ15N indicator[J].Journal of Nuclear Agricultural Sciences, 2021, 35(9):2056-2064.
[12] 申雪, 袁玉伟, 聂晶, 等.稳定同位素在葡萄酒产地溯源中的研究进展[J].中外葡萄与葡萄酒, 2020(6):60-65.
SHEN X, YUAN Y W, NIE J, et al.Research progress of stable isotopes in wine origin tracing[J].Sino-Overseas Grapevine & Wine, 2020(6):60-65.
[13] LI C L, WANG Q, SHAO S Z, et al.Stable isotope effects of biogas slurry applied as an organic fertilizer to rice, straw, and soil[J].Journal of Agricultural and Food Chemistry, 2021, 69(29):8090-8097.
[14] CHUNG I M, KIM Y J, MOON H S, et al.Long-term isotopic model study for ecofriendly rice (Oryza sativa L.) authentication:Updating a case study in South Korea[J].Food Chemistry, 2021, 362: 130215.
[15] 孙开奇, 沙博郁, 张楠, 等.京西稻糙米及精米中9种微量矿物质元素含量对比分析[J].食品安全质量检测学报, 2021, 12(6):2087-2092.
SUN K Q, SHA B Y, ZHANG N, et al.Comparative analysis of 9 trace mineral elements in brown rice and polished rice of Jingxi rice[J].Journal of Food Safety & Quality, 2021, 12(6):2087-2092.
[16] HU B L, HUANG D R, XIAO Y Q, et al.Mapping QTLs for mineral element contents in brown and milled rice using an Oryza sativa×O.rufipogon backcross inbred line population[J].Cereal Research Communications, 2016, 44(1):57-68.
[17] 邵圣枝, 陈元林, 张永志, 等.稻米中同位素与多元素特征及其产地溯源PCA -LDA判别[J].核农学报, 2015, 29(1):119-127.
SHAO S Z, CHEN Y L, ZHANG Y Z, et al.Determination of the geographic origin of rice by PCA-LDA based on the stable isotopes and multi-elements concentrations[J].Journal of Nuctear Agricultural Sciences, 2015, 29(1):119-127.
[18] YUAN Y W, ZHANG W X, ZHANG Y Z, et al.Differentiating organically farmed rice from conventional and green rice harvested from an experimental field trial using stable isotopes and multi-element chemometrics[J].Journal of Agricultural and Food Chemistry, 2018, 66(11):2607-2615.
[19] CHUNG I M, PARK S K, LEE K J, et al.Authenticity testing of environment-friendly Korean rice (Oryza sativa L.) using carbon and nitrogen stable isotope ratio analysis[J].Food Chemistry,2017, 234:425-430.
[20] LIU Z, YUAN Y W, XIE T Z, et al.Long-Term agricultural effects on the authentication accuracy of organic, green, and conventional rice using isotopic and elemental chemometric analyses[J].Journal of Agricultural and Food Chemistry, 2020, 68(5):1213-1225.
[21] 袁玉伟, 张志恒, 杨桂玲, 等.氮稳定同位素的印迹规律与有机食品鉴别[J].核农学报, 2009, 23(4):659-663.
YUAN Y W, ZHANG Z H, YANG G L, et al.Signatures of nitrogen stable isotope and determination of organic food authentication[J].Journal of Nuclear Agricultural Sciences, 2009, 23(4):659-663.
[22] 刘金亮, 薛滨, 姚书春, 等.湖泊水生植物稳定碳同位素分馏机制与应用研究进展[J].生态学报, 2020, 40(8):2533-2544.
LIU J L, XUE B, YAO S C, et al.Mechanisms of stable carbon isotope fractionation of aquatic plants and the research advances of application[J].Acta Ecologica Sinica, 2020, 40(8):2533-2544.
[23] 公维民, 马丽娜, 王飞, 等.我国大米碳氮稳定同位素比率特征及溯源应用[J].农产品质量与安全, 2019, (4):9-12;40.
GONG W M, MA L N, WANG F, et al.Characteristics of stable isotope ratio of carbon and nitrogen in China’s rice and its application on traceability[J].Quality and Safety of Agro-Products, 2019, (4):9-12;40.
[24] 张兰, 黄忠, 黄文琦, 等.稻米加工过程营养成分流失研究[J].安徽农业科学, 2012, 40(34):16793-16794;16798.
ZHANG L, HUANG Z, HUANG W Q, et al.Study on loss of nutrient elements during rice processing[J].Journal of Anhui Agricultural Sciences, 2012, 40(34):16793-16794;16798.
[25] LIU Z, ZHANG W X, ZHANG Y Z, et al.Assuring food safety and traceability of polished rice from different production regions in China and Southeast Asia using chemometric models[J].Food Control, 2019, 99:1-10.
文章导航

/