综述与专题评论

酵母表面展示技术在食品发酵领域的应用研究进展

  • 李悦 ,
  • 姬翔 ,
  • 李颜 ,
  • 井蕾 ,
  • 牛明福 ,
  • 李阳
展开
  • 1(河南科技大学 食品与生物工程学院,河南 洛阳,471000)
    2(食品微生物河南省工程技术研究中心,河南 洛阳,471000)
第一作者:硕士研究生(李阳副教授为通信作者,E-mail:liyang@haust.edu.cn)

收稿日期: 2023-03-29

  修回日期: 2023-04-21

  网络出版日期: 2024-03-15

基金资助

国家自然科学基金项目(31500052);国家级大学生创新创业训练计划项目(202210464031)

Advances in the application of yeast surface display technology in food fermentation

  • LI Yue ,
  • JI Xiang ,
  • LI Yan ,
  • JING Lei ,
  • NIU Mingfu ,
  • LI Yang
Expand
  • 1(College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China)
    2(Henan Engineering Research Center of Food Microbiology, Luoyang 471000, China)

Received date: 2023-03-29

  Revised date: 2023-04-21

  Online published: 2024-03-15

摘要

酵母表面展示系统与其他种类的微生物展示系统相比,更适合于构建食品发酵所用的全细胞催化剂。该文主要概述了酵母表面展示技术的原理及其在食品发酵领域的应用情况和应用效果。研究表明,酵母表面展示技术在改善传统发酵食品品质、简化发酵生产过程、生产高值和增值食品等方面具有较大的应用潜力。该综述还对酵母表面展示技术在食品领域应用的未来研究方向进行了展望,以期为食品发酵的技术革新和工业化应用提供参考。

本文引用格式

李悦 , 姬翔 , 李颜 , 井蕾 , 牛明福 , 李阳 . 酵母表面展示技术在食品发酵领域的应用研究进展[J]. 食品与发酵工业, 2024 , 50(4) : 322 -328 . DOI: 10.13995/j.cnki.11-1802/ts.035662

Abstract

Compared with other microbial display systems, the yeast surface display system is more suitable for the construction of whole-cell catalysts for food fermentation. This article mainly summarizes the principle of yeast surface display technology and its application and effect in the field of food fermentation. The results show that yeast surface display technology has great application potential in improving the quality of traditional fermented foods, simplifying the fermentation production process, and producing produce high-value and value-added foods. This review also prospect the future research direction of yeast surface display technology in food field, and provide references for the technological innovation and industrial application of food fermentation.

参考文献

[1] RAEESZADEH-SARMAZDEH M, BODER E T.Yeast surface display:New opportunities for a time-tested protein engineering system[J].Methods in Molecular Biology, 2022, 2491:3-25.
[2] SMITH G P.Filamentous fusion phage:Novel expression vectors that display cloned antigens on the virion surface[J].Science, 1985, 228(4705):1315-1317.
[3] SHIBASAKI S, UEDA M.Progress of molecular display technology using Saccharomyces cerevisiae to achieve sustainable development goals[J].Microorganisms, 2023, 11(1):125.
[4] URBAR-ULLOA J, MONTAÑO-SILVA P, RAMÍREZ-PELAYO A S, et al.Cell surface display of proteins on filamentous fungi[J].Applied Microbiology and Biotechnology, 2019, 103(17):6949-6972.
[5] ZHANG C M, CHEN H Y, ZHU Y P, et al.Saccharomyces cerevisiae cell surface display technology:Strategies for improvement and applications[J].Frontiers in Bioengineering and Biotechnology, 2022, 10:1056804.
[6] INOKUMA K, KITADA Y, BAMBA T, et al.Improving the functionality of surface-engineered yeast cells by altering the cell wall morphology of the host strain[J].Applied Microbiology and Biotechnology, 2021, 105(14-15):5895-5904.
[7] YE M Q, YE Y Q, DU Z J, et al.Cell-surface engineering of yeasts for whole-cell biocatalysts[J].Bioprocess And Biosystems Engineering, 2021, 44(6):1003-1019.
[8] REKSTINA V V, BYKOVA A A, ZIGANSHIN R H, et al.GPI-modified proteins non-covalently attached to Saccharomyces cerevisiae yeast cell wall[J].Biochemistry (Moscow), 2019, 84(12):1513-1520.
[9] TEYMENNET-RAMÍREZ K V, MARTÍNEZ-MORALES F, TREJO-HERNÁNDEZ M R.Yeast surface display system:strategies for improvement and biotechnological applications[J].Frontiers in Bioengineering and Biotechnology, 2022, 9:794742.
[10] 张阳. 酿酒酵母高效表面展示β-葡萄糖苷酶提高葡萄酒香气的研究[D].杨凌:西北农林科技大学, 2019.
ZHANG Y.Efficient display of β-glucosidase on Saccharomyces cerevisiae cell wall for aroma enhancement in wine[D].Yangling:Northwest A&F University, 2019.
[11] ZHANG Y, MIN Z, QIN Y, et al.Efficient display of Aspergillus niger β-glucosidase on Saccharomyces cerevisiae cell wall for aroma enhancement in wine[J].Journal of Agricultural and Food Chemistry, 2019, 67(18):5169-5176.
[12] SUMBY K M, BARTLE L, GRBIN P R, et al.Measures to improve wine malolactic fermentation[J].Applied Microbiology and Biotechnology, 2019, 103(5):2033-2051.
[13] NETO R, MOTA M J, LOPES R P, et al.Growth and metabolism of Oenococcus oeni for malolactic fermentation under pressure[J].Letters In Applied Microbiology, 2016, 63(6):426-433.
[14] ZHANG X, HOU X, LIANG F, et al.Surface display of malolactic enzyme from Oenococcus oeni on Saccharomyces cerevisiae[J].Applied Biochemistry and Biotechnology, 2013, 169(8):2350-2361.
[15] 黄蓉, 吕林灿, 李莹, 等.酿酒酵母表面展示金属硫蛋白吸附葡萄酒中的铜离子[J].中国食品学报, 2022, 22(7):31-39.
HUANG R, LYU L C, LI Y, et al.The adsorption of copper ions in wine by displaying metallothionein on the surface of Saccharomyces cerevisiae[J].Journal of Chinese Institute of Food Science and Technology, 2022, 22(7):31-39.
[16] 黄蓉, 董超, 余鸿飞, 等.酿酒酵母表面展示技术表达酸性蛋白酶[J].中国食品学报, 2022, 22(2):114-122.
HUANG R, DONG C, YU H F, et al.Expression of acid protease using surface display technology of Saccharomyces cerevisiae[J].Journal of Chinese Institute of Food Science and Technology, 2022, 22(2):114-122.
[17] COSTA G P, SPOLIDORO L S, MANFROI V, et al.α-Acetolactate decarboxylase immobilized in chitosan:A highly stable biocatalyst to prevent off-flavor in beer[J].Biotechnology Progress, 2022, 38(6):e3295.
[18] CEJNAR R, HLOŽKOVÁ K, KOTRBA P, et al.Surface-engineered Saccharomyces cerevisiae displaying alpha-acetolactate decarboxylase from Acetobacter aceti ssp xylinum[J].Biotechnology Letters, 2016, 38(12):2145-2151.
[19] 郭钦, 阮晖, 张伟, 等.酿酒酵母表面展示表达的β-1,3-1,4-葡聚糖酶酶学性质研究[J].中国食品学报, 2014, 14(5):26-31.
GUO Q, RUAN H, ZHANG W, et al.Studies on the properties of displayed β-1,3-1,4-glucanase on the yeast cell[J].Journal of Chinese Institute of Food Science and Technology, 2014, 14(5):26-31.
[20] GUO Q, ZHANG W, MA L L, et al.A food-grade industrial arming yeast expressing beta-1,3-1,4-glucanase with enhanced thermal stability[J].Journal of Zhejiang University SCIENCE B, 2010, 11(1):41-51.
[21] DOU Y Q, YU X, LUO Y L, et al.Effect of fructooligosaccharides supplementation on the gut microbiota in human:A systematic review and meta-analysis[J].Nutrients, 2022, 14(16):3298.
[22] ZHANG L B, AN J, LI L J, et al.Highly efficient fructooligosaccharides production by an erythritol-producing yeast Yarrowia lipolytica displaying fructosyltransferase[J].Journal of Agricultural and Food Chemistry, 2016, 64(19):3828-3837.
[23] 安瑾. 解脂耶氏酵母表面展示β-半乳糖苷酶合成低聚半乳糖[D].上海:上海交通大学, 2016.
AN J.Cell surface-displaying the β-galactosidase on Yarrowia lipolytica:A new approach to synthesizing galactooligosaccharides[D].Shanghai: Shanghai Jiao Tong University, 2016.
[24] QIU S T, CHEN J J, BAI Y, et al.GOS ameliorates nonalcoholic fatty liver disease induced by high fat and high sugar diet through lipid metabolism and intestinal microbes[J].Nutrients, 2022, 14(13):2749.
[25] AN J, ZHANG L B, LI L J, et al.An alternative approach to synthesizing galactooligosaccharides by cell-surface display of β-galactosidase on Yarrowia lipolytica[J].Journal of Agricultural and Food Chemistry, 2016, 64(19):3819-3827.
[26] 王框. 表面展示α-葡萄糖苷酶毕赤酵母的固定及其在低聚异麦芽寡糖合成中的应用[D].广州:华南理工大学, 2018.
WANG K.Immobilization of Pichia Pastoris surface displayed with α-glucosidase and its application in the synthesis of isomaltooligosaccharides[D].Guangzhou: South China University of Technology, 2018.
[27] CASA-VILLEGAS M, MARíN-NAVARRO J, POLAINA J.Synthesis of isomaltooligosaccharides by Saccharomyces cerevisiae cells expressing Aspergillus niger α-glucosidase[J].ACS Omega, 2017, 2(11):8062-8068.
[28] 刘大文, 程海荣, 邓子新.解脂耶氏酵母表面展示β-淀粉酶与α-葡萄糖转苷酶及一步法由淀粉合成低聚异麦芽糖[J].生物工程学报, 2019, 35(1):121-132.
LIU D W, CHENG H R, DENG Z X.One step production of isomalto-oligosaccharides by engineered Yarrowia lipolytica yeast co-displayed β-amylase and α-transglucosidase[J].Chinese Journal of Biotechnology, 2019, 35(1):121-132.
[29] 钱玲, 郑一文, 林影, 等.毕赤酵母表面展示麦芽三糖生成酶全细胞催化制备麦芽三糖[J].食品科技, 2020, 45(5):1-7.
QIAN L, ZHENG Y W, LIN Y, et al.Cell-Surface display of maltotriose-producing α-amylase in Pichia pastoris and preparation of maltotriose from whole-cell catalyst[J].Food Science and Technology, 2020, 45(5):1-7.
[30] ZHENG Y, WANG Z P, JI X F, et al.Display of a sucrose isomerase on the cell surface of Yarrowia lipolytica for synthesis of isomaltulose from sugar cane by-products[J].3 Biotech, 2019, 9(5):179.
[31] LEE G Y, JUNG J H, SEO D H, et al.Isomaltulose production via yeast surface display of sucrose isomerase from Enterobacter sp.FMB-1 on Saccharomyces cerevisiae[J].Bioresource Technology, 2011, 102(19):9179-9184.
[32] 李宁. 解脂耶氏酵母表面展示海藻糖合成酶一步转化麦芽糖得到高纯海藻糖的研究[D].上海:上海交通大学, 2016.
LI N.Producing high-purity trehalose from maltose by Yarrowia lipolytica displaying trehalose synthase on the cell surface[D].Shanghai:Shanghai Jiao Tong University, 2016.
[33] 李梦悦. 毕赤酵母表面展示海藻糖合酶技术的研究[D].济南:齐鲁工业大学, 2016.
LI M Y.Study on the technology of trehalose synthase on the surface of Pichia pastoris[D].Jinan: Qilu University of Technology, 2016.
[34] LI N, WANG H W, LI L J, et al.Integrated approach to producing high-purity trehalose from maltose by the yeast Yarrowia lipolytica displaying trehalose synthase (tres) on the cell surface[J].Journal of Agricultural and Food Chemistry, 2016, 64(31):6179-6187.
[35] YANG S J, LV X, WANG X H, et al.Cell-Surface displayed expression of trehalose synthase from Pseudomonas putida ATCC 47054 in Pichia pastoris using Pir1p as an anchor protein[J].Frontiers in Microbiology, 2017, 8:2583.
[36] 潘小幸. 白地霉脂肪酶在酿酒酵母和毕赤酵母细胞表面的展示研究[D].武汉:华中科技大学, 2012.
PAN X X.Surface display of Geotrichum candidum lipase in Saccharomyces cerevisiae and Pichia pastoris[D].Wuhan: Huazhong University of Science and Technology, 2012.
[37] PAN X X, XU L, ZHANG Y, et al.Efficient display of active Geotrichum sp.lipase on Pichia pastoris cell wall and its application as a whole-cell biocatalyst to enrich EPA and DHA in fish oil[J].Journal of Agricultural and Food Chemistry, 2012, 60(38):9673-9682.
[38] XU L, XIAO X, WANG F, et al.Surface-Displayed thermostable Candida rugosa lipase 1 for docosahexaenoic acid enrichment[J].Applied Biochemistry and Biotechnology, 2020, 190(1):218-231.
[39] 程青. 磷脂酶D在大肠杆菌中的异源表达及其催化合成磷脂酰丝氨酸的研究[D].杭州:浙江大学, 2021.
CHENG Q.The heterogeneous expression of phospholipase D in Escherichia coli and its synthesis of phosphatidylserine[D].Hangzhou: Zhejiang University, 2021.
[40] LIU Y H, ZHANG T, QIAO J, et al.High-yield phosphatidylserine production via yeast surface display of phospholipase D from Streptomyces chromofuscus on Pichia pastoris[J].Journal of Agricultural and Food Chemistry, 2014, 62(23):5354-5360.
[41] LIU Y H, HUANG L, FU Y, et al.A novel process for phosphatidylserine production using a Pichia pastoris whole-cell biocatalyst with overexpression of phospholipase D from Streptomyces halstedii in a purely aqueous system[J].Food Chemistry, 2019, 274:535-542.
[42] GUIRIMAND G, SASAKI K, INOKUMA K, et al.Cell surface engineering of Saccharomyces cerevisiae combined with membrane separation technology for xylitol production from rice straw hydrolysate[J].Applied Microbiology and Biotechnology, 2016, 100(8):3477-3487.
[43] MADZAK C.Engineering Yarrowia lipolytica for use in biotechnological applications:A review of major achievements and recent innovations[J].Molecular Biotechnology, 2018, 60(8):621-635.
[44] 艾莹莹. 脂肪酶在毕赤酵母细胞表面的间接展示研究[D].武汉:湖北大学, 2021.
AI Y Y.Indirect surface display of lipase on Pichia pastoris cells[D].Wuhan: Hubei University, 2021.
文章导航

/