研究报告

罗非鱼皮硫酸皮肤素与胶原蛋白同时提取工艺优化及初步鉴定

  • 王鑫 ,
  • 贾学静 ,
  • 汪卓 ,
  • 陈建平 ,
  • 刘晓菲 ,
  • 宋兵兵 ,
  • 李瑞 ,
  • 钟赛意
展开
  • 1(广东海洋大学 食品科技学院,广东省水产品加工与安全重点实验室,广东省海洋生物制品工程实验室,广东省海洋食品工程技术研究中心,广东省亚热带果蔬加工科技创新中心,广东 湛江,524008)
    2(海洋食品精深加工关键技术省部共建协同创新中心,大连工业大学,辽宁 大连,116034)
第一作者:硕士研究生(钟赛意教授为通信作者,E-mail:zsylxc@126.com)

收稿日期: 2022-10-23

  修回日期: 2022-11-25

  网络出版日期: 2024-03-15

基金资助

广东省茂名市罗非鱼优势特色产业集群项目(22282109-1);国家重点研发计划重点专项(2019YFD0902005);广东省重点领域研发计划项目(2020B1111030004);湛江市科技计划项目(2019A01015);广东省高校科技创新团队项目(2021KCXTD021)

Optimization and preliminary identification of simultaneous extraction process of dermatan sulfate and collagen from tilapia skin

  • WANG Xin ,
  • JIA Xuejing ,
  • WANG Zhuo ,
  • CHEN Jianping ,
  • LIU Xiaofei ,
  • SONG Bingbing ,
  • LI Rui ,
  • ZHONG Saiyi
Expand
  • 1(College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Sub-tropical Fruit and vegetable Processing Technology Innovation Center,Zhanjiang 524088, China)
    2(Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China)

Received date: 2022-10-23

  Revised date: 2022-11-25

  Online published: 2024-03-15

摘要

针对鱼皮单独提取硫酸皮肤素造成资源利用率不高的问题,该研究以罗非鱼皮为原料,采用低温酶提酸促溶法同时提取硫酸皮肤素与胶原蛋白,通过单因素试验及响应面优化提取工艺,并利用醋酸纤维素薄膜电泳、聚丙烯酰胺凝胶电泳、傅里叶变换红外光谱等对罗非鱼皮硫酸皮肤素与胶原蛋白进行初步鉴定。结果表明,最佳提取工艺为中性蛋白酶加酶量5 930 U/g,提取时间25.8 h,提取温度28.5 ℃,料液比1∶40(g∶mL),在此条件下罗非鱼皮硫酸皮肤素得率为132.12 mg/100 g,胶原蛋白提取率为53.14%,二者分别具有典型的硫酸皮肤素及胶原蛋白特征。该研究为同时提取罗非鱼皮硫酸皮肤素与胶原蛋白提供了理论依据,为罗非鱼皮下脚料的高效利用提供了一种新途径。

本文引用格式

王鑫 , 贾学静 , 汪卓 , 陈建平 , 刘晓菲 , 宋兵兵 , 李瑞 , 钟赛意 . 罗非鱼皮硫酸皮肤素与胶原蛋白同时提取工艺优化及初步鉴定[J]. 食品与发酵工业, 2024 , 50(3) : 141 -148 . DOI: 10.13995/j.cnki.11-1802/ts.034069

Abstract

In view of the low resource utilization caused by the extraction of dermatan sulfate from fish skin alone, this study used tilapia skin as the raw material, used low-temperature enzyme acid extraction and solubilization method to extract dermatan sulfate and collagen at the same time, optimized the extraction process through single-factor test and response surface, and preliminarily identified tilapia skin dermatan sulfate and collagen by cellulose acetate film electrophoresis, polyacrylamide gel electrophoresis (SDS-PAGE), and Fourier transform infrared spectroscopy (FTIR) spectra. Results showed that the optimum extraction conditions were as follows: neutral protease dosage 5 930 U/g, 25.8 h of extraction time, 28.5 ℃ of extraction temperature, and 1∶40 (g∶mL) of solid-liquid ratio. Under these conditions, the yield of dermatan sulfate was 132.12 mg/100 g and the extraction rate of collagen was 53.14%. Both of them had typical characteristics of dermatan sulfate and collagen. This study provides a theoretical basis for the simultaneous extraction of dermatan sulfate and collagen in tilapia skin and provides a new way for the efficient utilization of tilapia skin scraps.

参考文献

[1] 赵雲, 桂朗, 陈良标.罗非鱼产业发展现状[J].中国水产, 2020(10):46-48.
ZHAO Y, GUI L, CHEN L B.Current situation of tilapia industry development[J].China Fisheries, 2020(10):46-48.
[2] 杨树奇, 曾少葵, 周春霞, 等.3种鱼皮的基本成分及氨基酸组成分析[J].广东海洋大学学报, 2010, 30(1):97-100.
YANG S Q, ZENG S K, ZHOU C X, et al.Analysis of proximate and amino acid composition of three fish skins[J].Journal of Guangdong Ocean University, 2010, 30(1):97-100.
[3] 苏永昌, 刘淑集, 刘智禹, 等.罗非鱼下脚料营养成分的分析及评价[J].食品工业科技, 2017, 38(14):285-288;293.
SU Y C, LIU S J, LIU Z Y, et al.Analysis and evaluation of nutritional components in tilapia byproduct[J].Science and Technology of Food Industry, 2017, 38(14):285-288;293.
[4] SILA A, BOUGATEF H, CAPITANI F, et al.Studies on European eel skin sulfated glycosaminoglycans:Recovery, structural characterization and anticoagulant activity[J].International Journal of Biological Macromolecules, 2018, 115:891-899.
[5] VALCARCEL J, NOVOA-CARBALLAL R, PÉREZ-MARTÍN R I, et al.Glycosaminoglycans from marine sources as therapeutic agents[J].Biotechnology Advances, 2017, 35(6):711-725.
[6] RODRIGUES J A G, QUINDERÉ A L G, DE QUEIROZ I N L, et al.Purificação, caracterização físico-química e atividade anticoagulante de glicosaminoglicanos isolados da pele de tilápia do nilo (Oreochromis niloticus)[J].Acta Scientiarum Technology, 2011, 33(3):233-242.
[7] 肖瑞祺. 不同物种皮肤来源的胶原蛋白和糖胺聚糖的结构与免疫活性研究[D].济南:山东大学, 2021.
XIAO R Q.Study on the structure and immune activity of collagen and glycosaminoglycan from different species of skin[D].Jinan:Shandong University, 2021.
[8] 蒋丽, 陆剑锋, 吕顺, 等.响应面法优化罗非鱼皮酶法脱脂工艺[J].食品工业科技, 2016, 37(6):211-215.
JIANG L, LU J F, LYU S, et al.Optimization of enzymatic defatted conditions of tilapia skin by response surface methodology[J].Science and Technology of Food Industry, 2016, 37(6):211-215.
[9] 张虹, 廖文娟.鮟鱇鱼皮硫酸皮肤素的提取[J].食品与发酵工业, 2009, 35(2):166-171.
ZHANG H, LIAO W J.Extract of dermatan sulfate from the skin of goosefish(Lophius litulon)[J].Food and Fermentation Industries, 2009, 35(2):166-171.
[10] 左格格,钟赛意,陈菁等.罗非鱼加工副产物不同部位硫酸软骨素的制备、理化性质及结构表征[J].食品科学,2022,43(24):67-73.
ZUO G G, ZHONG S Y, CHEN J, et al.Preparation, physicochemical properties and structural characterization of chondroitin sulfate from tilapia processing by-products[J]. Food Science, 2022,43(24):67-73.
[11] 杨碧仙, 曹宇, 范琴芳, 等.大鲵皮胶原蛋白制备工艺优化及其抗氧化活性研究[J].食品工业科技, 2020, 41(5):195-200.
YANG B X, CAO Y, FAN Q F, et al.Study on optimization of extraction technology of the collagen from Andrias davidianus skin and its antioxidant activity[J].Science and Technology of Food Industry, 2020, 41(5):195-200.
[12] CAO W Q, SHI L F, WENG W Y.Histological distribution and characterization of collagen in European eel (Anguilla anguilla) muscle[J].Journal of Aquatic Food Product Technology, 2020, 29(1):121-131.
[13] AHMED M, VERMA A K, PATEL R.Collagen extraction and recent biological activities of collagen peptides derived from sea-food waste:A review[J].Sustainable Chemistry and Pharmacy, 2020, 18:100315.
[14] SALLES T C, RODRIGUES J A G, BARCELLOS P G, et al.Inhibition of thrombin generation by dermatan sulfate isolated from the skin of Oreochromis niloticus[J].Revista Brasileira De Ciências Agrárias - Brazilian Journal of Agricultural Sciences, 2017, 12(1):98-104.
[15] 邢瀚文, 韩玮, 施文正, 等.响应面法优化固态发酵制备罗非鱼皮胶原蛋白的工艺[J].食品与发酵工业, 2020, 46(20):120-126.
XING H W, HAN W, SHI W Z, et al.Optimization of tilapia skin collagen preparation with solid-state fermentation by response surface methodology[J].Food and Fermentation Industries, 2020, 46(20):120-126.
[16] SAMIEI M H, JAMILI S, NIKUKAR H, et al.Isolation and evaluation of collagen from the fish (Thunnus tonggol) skin:A biological material for medical tissue engineering[J].Journal of Shahid Sadoughi University of Medical Sciences, 2022, 21(2):568-589.
[17] CHEN J, ZHOU S Y, WANG Z, et al.Anticoagulant and anti-inflammatory effects of a degraded sulfate glycosaminoglycan from swimming bladder[J].Food Research International, 2022, 157:111444.
[18] BEN MANSOUR M, MAJDOUB H, BATAILLE I, et al.Polysaccharides from the skin of the ray Raja radula.Partial characterization and anticoagulant activity[J].Thrombosis Research, 2009, 123(4):671-678.
[19] ZHOU C, MI S, LI J, et al.Purification, characterisation and antioxidant activities of chondroitin sulphate extracted from Raja porosa cartilage[J].Carbohydrate Polymers, 2020, 241:116306.
[20] LI J H, LI S, WU L M, et al.Ultrasound-assisted fast preparation of low molecular weight fucosylated chondroitin sulfate with antitumor activity[J].Carbohydrate Polymers, 2019, 209:82-91.
[21] KRICHEN F, BOUGATEF H, SAYARI N, et al.Isolation, purification and structural characterestics of chondroitin sulfate from smooth hound cartilage:In vitro anticoagulant and antiproliferative properties[J].Carbohydrate Polymers, 2018, 197:451-459.
[22] BEN MANSOUR M, DHAHRI M, HASSINE M, et al.Highly sulfated dermatan sulfate from the skin of the ray Raja montagui:Anticoagulant activity and mechanism of action[J].Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 2010, 156(3):206-215.
[23] 张正雨, 李傲婷, 王凤林, 等.刺参体壁及罗非鱼皮酶促溶性胶原蛋白特性的对比研究[J].食品科学, 2017, 38(21):55-60.
ZHANG Z Y, LI A T, WANG F L, et al.Comparative studies on characteristics of pepsin-soluble collagen from sea cucumber (Stichopus japonicas) body wall and tilapia (Oreochromis niloticus) skin[J].Food Science, 2017, 38(21):55-60.
[24] AHMED R, HAQ M, CHUN B S.Characterization of marine derived collagen extracted from the by-products of bigeye tuna (Thunnus obesus)[J].International Journal of Biological Macromolecules, 2019, 135:668-676.
[25] AHMED M, ANAND A, VERMA A K, et al.In-vitro self-assembly and antioxidant properties of collagen type I from Lutjanus erythropterus, and Pampus argenteus skin[J].Biocatalysis and Agricultural Biotechnology, 2022, 43:102412.
[26] 黄丹丹, 马良, 韩霜, 等.超声预处理影响金枪鱼皮胶原酶解工艺及机理初探[J].食品与发酵工业, 2017, 43(4):141-146.
HUANG D D, MA L, HAN S, et al.The effect of ultrasonic pretreatment on hydrolysate of Tuna skin and study on its mechanism[J].Food and Fermentation Industries, 2017, 43(4):141-146.
[27] SONG W K, LIU D, SUN L L, et al.Physicochemical and biocompatibility properties of type I collagen from the skin of Nile Tilapia (Oreochromis niloticus) for biomedical applications[J].Marine Drugs, 2019, 17(3):137.
[28] LI J, WANG M C, QIAO Y Y, et al.Extraction and characterization of type I collagen from skin of tilapia (Oreochromis niloticus) and its potential application in biomedical scaffold material for tissue engineering[J].Process Biochemistry, 2018, 74:156-163.
文章导航

/