玉米黄质是一种类胡萝卜素,在很多领域都有一定的应用。该研究在前期构建的脂质体积累酿酒酵母的基础上,表达玉米黄质合成酶,初步得到一株能够积累玉米黄质的酿酒酵母工程菌。进一步优化补料碳源、补料时间和补料方式,最终在5 L的发酵罐从48 h开始以指数流加的方式流加葡萄糖,得到玉米黄质的产量为47.7 mg/L。综上,该研究构建了一株高产玉米黄质重组菌并对其进行了发酵验证,研究结果为后续进行发酵优化提供了基础以及改进的方向。
Zeaxanthin is a carotenoid, which has certain applications in many fields.In this study, a zeaxanthin-yielding strain was obtained based on a previous construction of Saccharomyces cerevisiae with lipid engineering. Further optimization of the feeding resource, feeding time and feeding mode, the yield of zeaxanthin was increased to 47.7 mg/L when feeding glucose after 48 h under the exponential feeding mode in 5 L fermentor.To sum up, In this study, a recombinant strain with high yield of zeaxanthin was constructed and its fermentation validation was carried out.The research results provided the basis and improvement direction for subsequent fermentation optimization.
[1] KRINSKY N I.Possible biologic mechanisms for a protective role of xanthophylls[J].The Journal of Nutrition, 2002, 132(3):540S-542S.
[2] KRINSKY N I, LANDRUM J T, BONE R A.Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye[J].Annual Review of Nutrition, 2003, 23:171-201.
[3] MARES-PERLMAN J A, MILLEN A E, FICEK T L, et al.The body of evidence to support a protective role for lutein and zeaxanthin in delaying chronic disease[J].The Journal of Nutrition, 2002, 132(3):518S-524S.
[4] TABUNOKI H, SUGIYAMA H, TANAKA Y, et al.Isolation, characterization, and cDNA sequence of a carotenoid binding protein from the silk gland of Bombyx mori larvae[J].Journal of Biological Chemistry, 2002, 277(35):32133-32140.
[5] LI Z X, CHEN Q Q, TANG J L, et al.Integrating balanced mevalonate pathway into chromosome for improving lycopene production in Escherichia coli[J].Chinese Journal of Biotechnology, 2019, 35(3):404-414.
[6] 任龙. Blakeslea trispora产番茄红素菌株的选育及优化[D].武汉:华中农业大学, 2007.
REN L.Screening and optimizing of Blakeslea trispora strains for producing lycopene[D].Wuhan:Huazhong Agricultural University, 2007.
[7] TOYODA Y, THOMSON L R, LANGNER A, et al.Effect of dietary zeaxanthin on tissue distribution of zeaxanthin and lutein in quail[J].Investigative Ophthalmology & Visual Science, 2002, 43(4):1210-1221.
[8] HSU Y W, TSAI C F, CHEN W K, et al.Determination of lutein and zeaxanthin and antioxidant capacity of supercritical carbon dioxide extract from daylily (Hemerocallis disticha)[J].Food Chemistry, 2011, 129(4):1813-1818.
[9] LIAU B C, HONG S E, CHANG L P, et al.Separation of sight-protecting zeaxanthin from Nannochloropsis oculata by using supercritical fluids extraction coupled with elution chromatography[J].Separation and Purification Technology, 2011, 78(1):1-8.
[10] CATALDO V F, LÓPEZ J, CÁRCAMO M, et al.Chemical vs.biotechnological synthesis of C13-apocarotenoids:Current methods, applications and perspectives[J].Applied Microbiology and Biotechnology, 2016, 100(13):5703-5718.
[11] MANTZOURIDOU F, TSIMIDOU M Z.Lycopene formation in Blakeslea trispora.Chemical aspects of a bioprocess[J].Trends in Food Science & Technology, 2008, 19(7):363-371.
[12] CHOUDHARI S M, ANANTHANARAYAN L, SINGHAL R S.Use of metabolic stimulators and inhibitors for enhanced production of β-carotene and lycopene by Blakeslea trispora NRRL 2895 and 2896[J].Bioresource Technology, 2008, 99(8):3166-3173.
[13] DIRETTO G, AHRAZEM O, RUBIO-MORAGA Á, et al.UGT709G1:A novel uridine diphosphate glycosyltransferase involved in the biosynthesis of picrocrocin, the precursor of safranal in saffron (Crocus sativus)[J].The New Phytologist, 2019, 224(2):725-740.
[14] MA T, SHI B, YE Z L, et al.Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene[J].Metabolic Engineering, 2019, 52:134-142.
[15] BHOSALE P, LARSON A J, BERNSTEIN P S.Factorial analysis of tricarboxylic acid cycle intermediates for optimization of zeaxanthin production from Flavobacterium multivorum[J].Journal of Applied Microbiology, 2004, 96(3):623-629.
[16] ASKER D, BEPPU T, UEDA K.Mesoflavibacter zeaxanthinifaciens gen.nov., sp.nov., a novel zeaxanthin-producing marine bacterium of the family Flavobacteriaceae[J].Systematic and Applied Microbiology, 2007, 30(4):291-296.
[17] SUN J, SHAO Z Y, ZHAO H M, et al. Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae[J]. Biotechnology and Bioengineering, 2012, 109(8):2082-2092.
[18] LIANG J, NING J C, ZHAO H M Coordinated induction of multigene pathways in Saccharomyces cerevisiae[J]. Nucleic Acids Research, 2013, 41(4) :1-10.
[19] SINGH D, BARROW C J, MATHUR A S, et al. Optimization of zeaxanthin and β-carotene extraction from Chlorella saccharophila isolated from New Zealand marine waters[J]. Biocatalysis and Agricultural Biotechnology, 2015, 4(2):166-173.
[20] 李方迪, 李由然, 张梁, 等.代谢改造酿酒酵母生产番茄红素[J].食品与发酵工业, 2022, 48(23):25-33.
LI F D, LI Y R, ZHANG L, et al.Metabolic engineering of Saccharomyces cerevisiae for lycopene production[J].Food and Fermentation Industries, 2022, 48(23):25-33.