研究报告

代谢工程改造酿酒酵母合成玉米黄质

  • 赵崇屹 ,
  • 周景文 ,
  • 徐沙
展开
  • 1(江南大学 粮食发酵工艺与技术国家工程实验室,江苏 无锡,214122)
    2(江南大学 生物工程学院,江苏 无锡,214122)
    3(江南大学 未来食品科学中心,江苏 无锡,214122)
第一作者:硕士研究生(徐沙副教授为通信作者,E-mail:xusha1984@jiangnan.edu.cn)

收稿日期: 2023-03-03

  修回日期: 2023-04-21

  网络出版日期: 2024-04-09

基金资助

国家自然科学基金项目(22278188)

Metabolic engineering of Saccharomyces cerevisiae for zeaxanthin synthesis

  • ZHAO Chongyi ,
  • ZHOU Jingwen ,
  • XU Sha
Expand
  • 1(National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China)
    2(School of Biotechnology, Jiangnan University, Wuxi 214122, China)
    2(Center for Future Food Science, Jiangnan University, Wuxi 214122, China)

Received date: 2023-03-03

  Revised date: 2023-04-21

  Online published: 2024-04-09

摘要

玉米黄质是一种类胡萝卜素,在很多领域都有一定的应用。该研究在前期构建的脂质体积累酿酒酵母的基础上,表达玉米黄质合成酶,初步得到一株能够积累玉米黄质的酿酒酵母工程菌。进一步优化补料碳源、补料时间和补料方式,最终在5 L的发酵罐从48 h开始以指数流加的方式流加葡萄糖,得到玉米黄质的产量为47.7 mg/L。综上,该研究构建了一株高产玉米黄质重组菌并对其进行了发酵验证,研究结果为后续进行发酵优化提供了基础以及改进的方向。

本文引用格式

赵崇屹 , 周景文 , 徐沙 . 代谢工程改造酿酒酵母合成玉米黄质[J]. 食品与发酵工业, 2024 , 50(5) : 1 -6 . DOI: 10.13995/j.cnki.11-1802/ts.035321

Abstract

Zeaxanthin is a carotenoid, which has certain applications in many fields.In this study, a zeaxanthin-yielding strain was obtained based on a previous construction of Saccharomyces cerevisiae with lipid engineering. Further optimization of the feeding resource, feeding time and feeding mode, the yield of zeaxanthin was increased to 47.7 mg/L when feeding glucose after 48 h under the exponential feeding mode in 5 L fermentor.To sum up, In this study, a recombinant strain with high yield of zeaxanthin was constructed and its fermentation validation was carried out.The research results provided the basis and improvement direction for subsequent fermentation optimization.

参考文献

[1] KRINSKY N I.Possible biologic mechanisms for a protective role of xanthophylls[J].The Journal of Nutrition, 2002, 132(3):540S-542S.
[2] KRINSKY N I, LANDRUM J T, BONE R A.Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye[J].Annual Review of Nutrition, 2003, 23:171-201.
[3] MARES-PERLMAN J A, MILLEN A E, FICEK T L, et al.The body of evidence to support a protective role for lutein and zeaxanthin in delaying chronic disease[J].The Journal of Nutrition, 2002, 132(3):518S-524S.
[4] TABUNOKI H, SUGIYAMA H, TANAKA Y, et al.Isolation, characterization, and cDNA sequence of a carotenoid binding protein from the silk gland of Bombyx mori larvae[J].Journal of Biological Chemistry, 2002, 277(35):32133-32140.
[5] LI Z X, CHEN Q Q, TANG J L, et al.Integrating balanced mevalonate pathway into chromosome for improving lycopene production in Escherichia coli[J].Chinese Journal of Biotechnology, 2019, 35(3):404-414.
[6] 任龙. Blakeslea trispora产番茄红素菌株的选育及优化[D].武汉:华中农业大学, 2007.
REN L.Screening and optimizing of Blakeslea trispora strains for producing lycopene[D].Wuhan:Huazhong Agricultural University, 2007.
[7] TOYODA Y, THOMSON L R, LANGNER A, et al.Effect of dietary zeaxanthin on tissue distribution of zeaxanthin and lutein in quail[J].Investigative Ophthalmology & Visual Science, 2002, 43(4):1210-1221.
[8] HSU Y W, TSAI C F, CHEN W K, et al.Determination of lutein and zeaxanthin and antioxidant capacity of supercritical carbon dioxide extract from daylily (Hemerocallis disticha)[J].Food Chemistry, 2011, 129(4):1813-1818.
[9] LIAU B C, HONG S E, CHANG L P, et al.Separation of sight-protecting zeaxanthin from Nannochloropsis oculata by using supercritical fluids extraction coupled with elution chromatography[J].Separation and Purification Technology, 2011, 78(1):1-8.
[10] CATALDO V F, LÓPEZ J, CÁRCAMO M, et al.Chemical vs.biotechnological synthesis of C13-apocarotenoids:Current methods, applications and perspectives[J].Applied Microbiology and Biotechnology, 2016, 100(13):5703-5718.
[11] MANTZOURIDOU F, TSIMIDOU M Z.Lycopene formation in Blakeslea trispora.Chemical aspects of a bioprocess[J].Trends in Food Science & Technology, 2008, 19(7):363-371.
[12] CHOUDHARI S M, ANANTHANARAYAN L, SINGHAL R S.Use of metabolic stimulators and inhibitors for enhanced production of β-carotene and lycopene by Blakeslea trispora NRRL 2895 and 2896[J].Bioresource Technology, 2008, 99(8):3166-3173.
[13] DIRETTO G, AHRAZEM O, RUBIO-MORAGA Á, et al.UGT709G1:A novel uridine diphosphate glycosyltransferase involved in the biosynthesis of picrocrocin, the precursor of safranal in saffron (Crocus sativus)[J].The New Phytologist, 2019, 224(2):725-740.
[14] MA T, SHI B, YE Z L, et al.Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene[J].Metabolic Engineering, 2019, 52:134-142.
[15] BHOSALE P, LARSON A J, BERNSTEIN P S.Factorial analysis of tricarboxylic acid cycle intermediates for optimization of zeaxanthin production from Flavobacterium multivorum[J].Journal of Applied Microbiology, 2004, 96(3):623-629.
[16] ASKER D, BEPPU T, UEDA K.Mesoflavibacter zeaxanthinifaciens gen.nov., sp.nov., a novel zeaxanthin-producing marine bacterium of the family Flavobacteriaceae[J].Systematic and Applied Microbiology, 2007, 30(4):291-296.
[17] SUN J, SHAO Z Y, ZHAO H M, et al. Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae[J]. Biotechnology and Bioengineering, 2012, 109(8):2082-2092.
[18] LIANG J, NING J C, ZHAO H M Coordinated induction of multigene pathways in Saccharomyces cerevisiae[J]. Nucleic Acids Research, 2013, 41(4) :1-10.
[19] SINGH D, BARROW C J, MATHUR A S, et al. Optimization of zeaxanthin and β-carotene extraction from Chlorella saccharophila isolated from New Zealand marine waters[J]. Biocatalysis and Agricultural Biotechnology, 2015, 4(2):166-173.
[20] 李方迪, 李由然, 张梁, 等.代谢改造酿酒酵母生产番茄红素[J].食品与发酵工业, 2022, 48(23):25-33.
LI F D, LI Y R, ZHANG L, et al.Metabolic engineering of Saccharomyces cerevisiae for lycopene production[J].Food and Fermentation Industries, 2022, 48(23):25-33.
文章导航

/