该文以西北特产的旱地“和尚头”小麦粉为材料,采用超高压处理对小麦淀粉进行改性,并研究改性淀粉的结构和特性。实验结果表明,与原淀粉相比,100~400 MPa处理下,小颗粒淀粉所占的比重增加(P<0.05),随着处理压力的增加,淀粉颗粒膨胀和聚集,粒径变大;400 MPa处理下的溶解度和膨胀度分别比原淀粉降低了27.32%和8.84%;100 MPa压力处理后,淀粉的TO、TP、TC及ΔH均显著下降(P<0.05),处理压力达到400 MPa以上,检测不到热力学相关数据,表明此条件下小麦淀粉可能完全凝胶化。综上,压力超过400 MPa时,改性淀粉的结构和特性变化显著。
[1] LI W H, GAO J M, WU G L, et al.Physicochemical and structural properties of A-and B-starch isolated from normal and waxy wheat:Effects of lipids removal[J].Food Hydrocolloids, 2016, 60:364-373.
[2] KIM H S, HUBER K C.Simple purification (desalting) procedure to facilitate structural analysis of an alkali-solubilized/ neutralized starch solution by intermediate-pressure size-exclusion chromatography[J].Journal of Agricultural and Food Chemistry, 2007, 55(13):4944-4948.
[3] PIECYK M, DRUYŃSKA B, OŁTARZEWSKA A, et al.Effect of hydrothermal modifications on properties and digestibility of grass pea starch[J].International Journal of Biological Macromolecules, 2018, 118:2113-2120.
[4] ZHANG D L, XU H S, JIANG B, et al.Effects of ultra-high pressure on the morphological and physicochemical properties of lily starch[J].Food Science & Nutrition, 2020, 9(2):952-962.
[5] LI W H, TIAN X L, LIU L P, et al.High pressure induced gelatinization of red adzuki bean starch and its effects on starch physicochemical and structural properties[J].Food Hydrocolloids, 2015, 45:132-139.
[6] KIM S, YANG S Y, CHUN H H, et al.High hydrostatic pressure processing for the preparation of buckwheat and tapioca starch films[J].Food Hydrocolloids, 2018, 81:71-76.
[7] GUO Z B, ZENG S X, LU X, et al.Structural and physicochemical properties of lotus seed starch treated with ultra-high pressure[J].Food Chemistry, 2015, 186:223-230.
[8] LARREA-WACHTENDORFF D, TABILO-MUNIZAGA G, FERRARI G.Potato starch hydrogels produced by high hydrostatic pressure (HHP):A first approach[J].Polymers, 2019, 11(10):1673.
[9] 孙小凡, 曾庆华.小麦淀粉实验室制备工艺研究[J].粮油加工, 2008(1):96-98.
SUN X F, ZENG Q H. Study on laboratory preparation technology of wheat starch[J]. Cereals and Oils Processing, 2008(1): 96-98.
[10] 张晶, 张美莉.超高压处理对燕麦淀粉颗粒特性、热特性及流变学特性的影响[J].食品科学, 2020, 41(23):114-121.
ZHANG J, ZHANG M L.Effect of high hydrostatic pressure treatment on morphological, thermal and rheological properties of oat starch[J].Food Science, 2020, 41(23):114-121.
[11] OVANDO-MARTÍNEZ M, OSORIO-DÍAZ P, WHITNEY K, et al.Effect of the cooking on physicochemical and starch digestibility properties of two varieties of common bean (Phaseolus vulgaris L.) grown under different water regimes[J].Food Chemistry, 2011, 129(2):358-365.
[12] ZHANG B J, LI X X, LIU J, et al.Supramolecular structure of A- and B-type granules of wheat starch[J].Food Hydrocolloids, 2013, 31(1):68-73.
[13] WANG S J, YU J L, ZHU Q H, et al.Granular structure and allomorph position in c-type Chinese yam starch granule revealed by SEM, 13C CP/MAS NMR and XRD[J].Food Hydrocolloids, 2009, 23(2):426-433.
[14] 郭泽镔, 曾绍校, 郑宝东.超高压处理对莲子淀粉理化特性的影响[J].中国食品学报, 2014, 14(11):118-123.
GUO Z B, ZENG S X, ZHENG B D.Effect of ultra high pressure processing on the physicochemical properties of lotus-seed starch[J].Journal of Chinese Institute of Food Science and Technology, 2014, 14(11):118-123.
[15] ZHANG B, WU H, GOU M, et al.The comparison of structural, physicochemical, and digestibility properties of repeatedly and continuously annealed sweet potato starch[J].Journal of Food Science, 2019, 84(8):2050-2058.
[16] 张晶, 张美莉.燕麦淀粉提取工艺优化及其相关特性研究[J].食品科技, 2019, 44(9):295-302.
ZHANG J, ZHANG M L.Extraction and related properties of oat starch[J].Food Science and Technology, 2019, 44(9):295-302.
[17] LI H, WANG R R, LIU J, et al.Effects of heat-moisture and acid treatments on the structural, physicochemical, and in vitro digestibility properties of lily starch[J].International Journal of Biological Macromolecules, 2020, 148:956-968.
[18] HU X P, ZHANG B, JIN Z Y, et al.Effect of high hydrostatic pressure and retrogradation treatments on structural and physicochemical properties of waxy wheat starch[J].Food Chemistry, 2017, 232:560-565.
[19] VALLONS K J R, ARENDT E K.Effects of high pressure and temperature on buckwheat starch characteristics[J].European Food Research and Technology, 2009, 230(2):343-351.
[20] FLORES-MORALES A, JIMÉNEZ-ESTRADA M, MORA-ESCOBEDO R.Determination of the structural changes by FT-IR, Raman, and CP/MAS 13C NMR spectroscopy on retrograded starch of maize tortillas[J].Carbohydrate Polymers, 2012, 87(1):61-68.
[21] YANG Y, ZHENG S S, LI Z, et al.Influence of three types of freezing methods on physicochemical properties and digestibility of starch in frozen unfermented dough[J].Food Hydrocolloids, 2021, 115:106619.
[22] 王金荣. 退火及超高压对三种不同结晶类型的淀粉结构和功能性质的影响[D].天津:天津科技大学, 2016.
WANG J R.The effect of annealing and ultra-high pressure treatment on structural and functional of three starches with different polymorphs[D].Tianjin:Tianjin University of Science and Technology, 2016.
[23] ZHANG B J, CHEN L, LI X X, et al.Understanding the multi-scale structure and functional properties of starch modulated by glow-plasma:A structure-functionality relationship[J].Food Hydrocolloids, 2015, 50:228-236.
[24] LINDEBOOM N, CHANG P R, TYLER R T.Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches:A review[J].Starch-Stärke, 2004, 56(3-4):89-99.
[25] ZHU F, LI H.Effect of high hydrostatic pressure on physicochemical properties of quinoa flour[J].LWT, 2019, 114:108367.
[26] LIU M, WU N N, YU G P, et al.Physicochemical properties, structural properties, and in vitro digestibility of pea starch treated with high hydrostatic pressure[J].Starch-Stärke, 2018, 70(1-2):1700082.
[27] YE J P, HU X T, ZHANG F, et al.Freeze-thaw stability of rice starch modified by improved extrusion cooking technology[J].Carbohydrate Polymers, 2016, 151:113-118.
[28] 缪铭. 慢消化淀粉的特性及形成机理研究[D].无锡:江南大学, 2009.
MIAO M.Characteristic and formation mechanism of slowly digestible starch[D].Wuxi:Jiangnan University, 2009.
[29] LI W H, BAI Y F, MOUSAA S A S, et al.Effect of high hydrostatic pressure on physicochemical and structural properties of rice starch[J].Food and Bioprocess Technology, 2012, 5(6):2233-2241.