研究报告

香榧油对肥胖小鼠脂质代谢紊乱的作用机制研究

  • 蒋起宏 ,
  • 姚诗炜 ,
  • 卢红伶 ,
  • 蒋陈凯 ,
  • 胡文君 ,
  • 冯永才 ,
  • 陈振滨 ,
  • 沈国新 ,
  • 相兴伟 ,
  • 陈琳
展开
  • 1(浙江省农业科学院蚕桑与茶叶研究所,浙江 杭州,310021)
    2(浙江工业大学 食品科学与工程学院,浙江 湖州,313200)
    3(诸暨绿康生物科技有限公司,浙江 绍兴,311800)
第一作者:硕士研究生(陈琳副研究员为通信作者,E-mail:chenlinsdau@163.com)

收稿日期: 2023-02-10

  修回日期: 2023-03-07

  网络出版日期: 2024-06-11

基金资助

浙江省中西医结合肿瘤防治技术研究重点实验室开放课题基金(202208CL);浙江省农业科学院成果示范推广项目

Mechanism of Torreya seed oil on disturbance of lipid metabolism in obese mice

  • JIANG Qihong ,
  • YAO Shiwei ,
  • LU Hongling ,
  • JIANG Chenkai ,
  • HU Wenjun ,
  • FENG Yongcai ,
  • CHEN Pingtan ,
  • SHEN Guoxin ,
  • XIANG Xingwei ,
  • CHEN Lin
Expand
  • 1(Zhejiang Academy of Agricultural Sciences, Institute of Sericultural and Tea, Hangzhou 310021, China)
    2(Zhejiang University of Technology, College of Food Science and Technology, Huzhou 313200, China)
    3(Zhuji LYUkang Biotechnology Co.Ltd., Shaoxing 311800, China)

Received date: 2023-02-10

  Revised date: 2023-03-07

  Online published: 2024-06-11

摘要

肥胖是一种普遍存在的疾病,与许多严重的并发症有关。为了探究香榧油对肥胖小鼠脂质代谢影响的潜在分子机制,以高脂饮食建立肥胖小鼠模型,评估香榧油的降脂、抗氧化和抗炎症功能。结果表明,与高脂饮食(high-fat diet,HFD)组小鼠相比,香榧油高剂量(Torreya seed oil high-dose,SCH)组小鼠总胆固醇、甘油三酯和低密度脂蛋白胆固醇的水平均显著降低,高密度脂蛋白胆固醇的水平显著升高(P<0.05)。香榧油能显著抑制体重增长,降低肝脏系数和肾周脂肪积累。此外,香榧油干预后能降低肥胖小鼠血清中肿瘤坏死因子-α和白介素6水平,提高超氧化物歧化酶和谷胱甘肽过氧化酶酶活力,改善氧化应激和炎症反应。实时荧光定量PCR(real-time quantitative PCR,RT-PCR)结果显示,与HFD组相比,香榧油低剂量(Torreya seed oil low-dose,SCL)组小鼠固醇调节元件结合蛋白-1c(sterol regulatory element-binding protein-1c, SPEBP-1c)表达水平显著降低(P<0.05),而腺苷酸活化蛋白激酶α(adenosine monophosphate (AMP)-activated protein kinase alpha,AMPKα)和脂肪酸合酶(fatty acid synthase, FAS)的表达水平略有降低但不显著;SCH组小鼠AMPKα、SPEBP-1c和FAS表达均显著降低(P<0.05)。香榧油改善肥胖小鼠脂质代谢紊乱的作用机制可能是通过调节AMPKα/SREBP-1c信号通路,提高抗氧化水平和降低炎症反应实现。

本文引用格式

蒋起宏 , 姚诗炜 , 卢红伶 , 蒋陈凯 , 胡文君 , 冯永才 , 陈振滨 , 沈国新 , 相兴伟 , 陈琳 . 香榧油对肥胖小鼠脂质代谢紊乱的作用机制研究[J]. 食品与发酵工业, 2024 , 50(8) : 176 -181 . DOI: 10.13995/j.cnki.11-1802/ts.035084

Abstract

Obesity is a widespread disease associated with many serious complications.This study aimed to investigate the potential molecular mechanisms of Torreya seed oil on lipid metabolism in obese mice, an obese mice model established with a high-fat diet to evaluate the hypolipidemic, antioxidant, and anti-inflammatory functions.The levels of total cholesterol, triglycerides, and low-density lipoprotein cholesterol were significantly decreased, but the level of high-density lipoprotein cholesterol was significantly increased in the Torreya seed oil high-dose (SCH) group mice compared with the high-fat diet (HFD) group mice (P<0.05).Meanwhile, Torreya seed oil could significantly reduce weight gain and decrease liver and perirenal fat accumulation.Torreya seed oil also reduced the expression levels of tumor necrosis factor-α and interleukin-6, increased the activities of superoxide dismutase and glutathione peroxidase, and improved oxidative stress and inflammatory response.Real-time quantitative PCR (RT-PCR) showed that the expression level of SPEBP-1c in the Torreya seed oil low-dose group was significantly reduced (P<0.05), while the expression levels of adenosine monophosphate (AMP)-activated protein kinase alpha (AMPKα) and fatty acid synthase (FAS) were only slightly reduced.The expression levels of AMPKα, sterol regulatory element-binding protein-1c (SPEBP-1c), and FAS in the SCH group were significantly decreased compared with those of the untreated obese mice (P<0.05).These results suggested that Torreya seed oil improved lipid metabolism disorders by regulating the AMPKα/SREBP-1c signalling pathway expression, increasing antioxidant levels, and reducing inflammatory responses in obese mice.

参考文献

[1] GOODY D, PFEIFER A.MicroRNAs in brown and beige fat[J].Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids, 2019, 1 864(1):29-36.
[2] FURUKAWA S, FUJITA T, SHIMABUKURO M, et al.Increased oxidative stress in obesity and its impact on metabolic syndrome[J].Journal of Clinical Investigation, 2004, 114(12):1752-1761.
[3] BARLOW G M, YU A, MATHUR R.Role of the gut microbiome in obesity and diabetes mellitus[J].Nutrition in Clinical Practice, 2015, 30(6):787-797.
[4] YANG C, WANG X, DENG Q C, et al.Rapeseed polysaccharides alleviate overweight induced by high-fat diet with regulation of gut microbiota in rats[J].Oil Crop Science, 2021, 6(4):192-200.
[5] KAPOOR K, MADAAN R, KUMAR S, et al.Role of natural products in the treatment of obesity:Nanotechnological perspectives[J].Current Drug Metabolism, 2021, 22(6):451-480.
[6] CAUSEVIC-RAMOSEVAC A, SEMIZ S.Drug interactions with statins[J].Acta Pharmaceutica, 2013, 63(3):277-293.
[7] RATNAYAKE W M N, GALLI C.Fat and fatty acid terminology, methods of analysis and fat digestion and metabolism:A background review paper[J].Annals of Nutrition and Metabolism, 2009, 55(1-3):8-43.
[8] ALBRACHT-SCHULTE K, KALUPAHANA N S, RAMALINGAM L, et al.Omega-3 fatty acids in obesity and metabolic syndrome:A mechanistic update[J].Journal of Nutritional Biochemistry, 2018, 58:1-16.
[9] 李哲斌. 香榧仁油的营养特性研究进展[J].中国油料作物学报, 2022, 44(6):1166-1172.
LI Z B.Progress in nutritional property of Torreya grandis kernel oil[J].Chinese Journal of Oil Crop Sciences, 2022, 44(6):1166-1172.
[10] HE Z Y, ZHU H D, LI W L, et al.Chemical components of cold pressed kernel oils from different Torreya grandis cultivars[J].Food Chemistry, 2016, 209:196-202.
[11] PICHÉ M E, TCHERNOF A, DESPRÉS J P.Obesity phenotypes, diabetes, and cardiovascular diseases[J].Circulation Research, 2020, 127(3):e107.
[12] YAMASAKI M, KITAGAWA T, KOYANAGI N, et al.Dietary effect of pomegranate seed oil on immune function and lipid metabolism in mice[J].Nutrition, 2006, 22(1):54-59.
[13] YANG C, LI L H, YANG L G, et al.Anti-obesity and Hypolipidemic effects of garlic oil and onion oil in rats fed a high-fat diet[J].Nutrition & Metabolism, 2018, 15:43.
[14] ZHAO Y, PENG L, LU W, et al.Effect of Eclipta prostrata on lipid metabolism in hyperlipidemic animals[J].Experimental Gerontology, 2015, 62:37-44.
[15] KARR S.Epidemiology and management of hyperlipidemia[J].The American Journal of Managed Care, 2017, 23(9):S139-S148.
[16] REHMAN K, AKASH M S H.Mechanism of generation of oxidative stress and pathophysiology of type 2 diabetes mellitus:How are they interlinked?[J].Journal of Cellular Biochemistry, 2017, 118(11):3577-3585.
[17] BANKOGLU E E, GERBER J, KODANDARAMAN G, et al.Influence of bariatric surgery induced weight loss on oxidative DNA damage[J].Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2020, 853:503194.
[18] YARLA N S, POLITO A, PELUSO I.Effects of olive oil on TNF-α and IL-6 in humans:Implication in obesity and frailty[J].Endocrine, Metabolic & Immune Disorders-Drug Targets, 2018, 18(1):63-74.
[19] SHI C M, ZHU L J, CHEN X H, et al.IL-6 and TNF-α induced obesity-related inflammatory response through transcriptional regulation of miR-146b[J].Journal of Interferon and Cytokine Research, 2014, 34(5):342-348.
[20] LIU Y S, YUAN M H, ZHANG C Y, et al.Puerariae lobatae radix flavonoids and puerarin alleviate alcoholic liver injury in zebrafish by regulating alcohol and lipid metabolism[J].Biomedicine & Pharmacotherapy, 2021, 134:111121.
[21] FANG K, WU F, CHEN G, et al.Diosgenin ameliorates palmitic acid-induced lipid accumulation via AMPK/ACC/CPT-1A and SREBP-1c/FAS signaling pathways in LO2 cells[J].BMC Complementary & Alternative Medicine, 2019, 19(1):255.
[22] FERRÉ P, PHAN F, FOUFELLE F.SREBP-1c and lipogenesis in the liver:An update1[J].Biochemical Journal, 2021, 478(20):3723-3739.
文章导航

/