研究报告

基于体外实验和网络药理学探讨紫苏粕多肽抗氧化应激的作用机制

  • 张红玉 ,
  • 李会珍 ,
  • 张志军 ,
  • 赵亚娜 ,
  • 侯天宇 ,
  • 李河 ,
  • 陈林
展开
  • 1(中北大学 化学与化工学院,山西 太原,030051)
    2(中北大学晋中产业技术创新研究院,山西 晋中,030600)
第一作者:硕士研究生(李会珍教授为通信作者,E-mail:hzli@nuc.edu.cn)

收稿日期: 2023-03-15

  修回日期: 2023-04-17

  网络出版日期: 2024-06-11

基金资助

山西省重点研发计划项目特优农业技术创新专项(2022ZDYF123);山西省基础研究计划青年项目(202203021222032);晋中市重点研发计划(Y212006);山西省研究生创新项目(2022Y614)

Exploration of mechanism of anti-oxidative stress of perilla meal peptides based on in vitro experiments and network pharmacology

  • ZHANG Hongyu ,
  • LI Huizhen ,
  • ZHANG Zhijun ,
  • ZHAO Yana ,
  • HOU Tianyu ,
  • LI He ,
  • CHEN Lin
Expand
  • 1(School of Chemistry and Chemical Engineering, Central North University, Taiyuan 030051, China)
    2(Jinzhong Industrial Technology Innovation Research Institute of Central North University, Jinzhong 030600, China)

Received date: 2023-03-15

  Revised date: 2023-04-17

  Online published: 2024-06-11

摘要

利用体外实验和网络药理学的方法对紫苏粕多肽抗氧化应激的物质基础和作用机制进行研究。首先对紫苏粕碱性蛋白酶酶解液进行超滤分级,以得率和抗氧化活性为指标,筛选出级分UF-4(<1 kDa),考察其对H2O2诱导的4T1细胞氧化应激模型的保护作用,发现UF-4可剂量性显著降低胞外乳酸脱氢酶活性和胞内丙二醛含量,显著提高胞内谷胱甘肽的含量及超氧化物歧化酶、过氧化氢酶活性,说明UF-4具有一定的抗氧化作用。在此基础上,运用网络药理学的方法,从UF-4中筛选出潜在活性物质18种,其对应靶点中与抗氧化作用相关的有176个,通过蛋白互作分析得到6个核心靶点,GO和KEGG富集分析表明UF-4通过多靶点、多途径的方式发挥抗氧化应激作用,主要涉及细胞凋亡、脂质与动脉粥样硬化、钙调节、炎症等生物学过程。分子对接进一步验证了18种潜在活性成分与核心靶点间存在较强的相互作用。总之,该研究初步表明UF-4抗氧化应激过程中多组分、多靶点、多通路的作用特点,为后期紫苏粕多肽抗氧化作用的研究与应用提供理论依据及参考。

本文引用格式

张红玉 , 李会珍 , 张志军 , 赵亚娜 , 侯天宇 , 李河 , 陈林 . 基于体外实验和网络药理学探讨紫苏粕多肽抗氧化应激的作用机制[J]. 食品与发酵工业, 2024 , 50(10) : 149 -159 . DOI: 10.13995/j.cnki.11-1802/ts.035467

Abstract

This study used in vitro experiments and network pharmacology to study the material basis and action mechanism of perilla meal polypeptide antioxidant stress.First, the alkaline protease hydrolysate of Perilla frutescens meal was classified by ultrafiltration, and the fraction UF-4 (<1 kDa) was selected based on the yield and antioxidant activity, and its protective effect on the oxidative stress model of 4T1 cells induced by H2O2 was investigated.It was found that UF-4 could significantly reduce the activity of extracellular lactate dehydrogenase (LDH) and the content of intracellular malondialdehyde (MDA), significantly increase the content of intracellular antioxidant factor glutathione (GSH) and the activity of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), indicating that UF-4 had a certain antioxidant effect.On this basis, 18 kinds of potential active substances were screened from UF-4 by network pharmacology, 176 of which were related to antioxidation.Six core targets were obtained through protein interaction analysis.Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that UF-4 exerted antioxidant stress through multiple targets and pathways, mainly involving biological processes such as apoptosis, lipid and atherosclerosis, calcium regulation, inflammation, etc.Molecular docking further verified the strong interaction between 18 potentially active ingredients and core targets.In conclusion, this study preliminarily showed the characteristics of multi-component, multi-target, and multi-path action in the process of UF-4 antioxidant stress, and provided a theoretical basis and reference for the research and application of the antioxidant effect of perilla meal peptides in the later stage.

参考文献

[1] ZHANG H J, LI H Z, ZHANG Z J, et al. Optimization of ultrasound-assisted extraction of polysaccharides from perilla seed meal by response surface methodology: Characterization and in vitro antioxidant activities[J]. Journal of Food Science, 2021, 86(2):306-318.
[2] 任志清, 李会珍, 张志军, 等. 不同品种紫苏叶迷迭香酸的提取及其生物活性[J]. 现代食品科技, 2021, 37(1):92-100.
REN Z Q, LI H Z, ZHANG Z J, et al. Extraction of rosmarinic acid from different varieties of Perilla leaves and its biological activity[J]. Modern Food Science and Technology, 2021, 37(1):92-100.
[3] HWANG Y J, KIM J M, YOON K Y. Characteristics of water-soluble polysaccharides extracts produced from Perilla seed meal via enzymatic hydrolysis[J]. CyTA-Journal of Food, 2020, 18(1):653-661.
[4] TANTIPAIBOONWONG P, CHAIWANGYEN W, SUTTAJIT M, et al. Molecular mechanism of antioxidant and anti-inflammatory effects of omega-3 fatty acids in Perilla seed oil and rosmarinic acid rich fraction extracted from Perilla seed meal on TNF-α induced A549 lung adenocarcinoma cells[J]. Molecules, 2021, 26(22):6757.
[5] HASHIMOTO M, MATSUZAKI K, HOSSAIN S, et al. Perilla seed oil enhances cognitive function and mental health in healthy elderly Japanese individuals by enhancing the biological antioxidant potential[J]. Foods, 2021, 10(5):1130.
[6] RAO C V, PATLOLLA J M R, COOMA I, et al. Prevention of familial adenomatous polyp development in APC Min mice and azoxymethane-induced colon carcinogenesis in F344 Rats by ω-3 fatty acid rich Perilla oil[J]. Nutrition and Cancer, 2013, 65(Suppl 1):54-60.
[7] 胡东亚, 张志军, 曹千慧, 等. 紫苏饼粕的残油醇提工艺及品质分析[J]. 现代食品科技, 2022, 38(2):218-223; 271.
HU D Y, ZHANG Z J, CAO Q H, et al. Alcohol extraction process and quality analysis of residual oil from Perilla cake meal[J]. Modern Food Science and Technology, 2022, 38(2):218-223; 271.
[8] MIRZAEI M, MIRDAMADI S, EHSANI M R, et al. Production of antioxidant and ACE-inhibitory peptides from Kluyveromyces marxianus protein hydrolysates: Purification and molecular docking[J]. Journal of Food and Drug Analysis, 2018, 26(2):696-705.
[9] LIGUORI I, RUSSO G, CURCIO F, et al. Oxidative stress, aging, and diseases[J]. Clinical Interventions in Aging, 2018, 13:757-772.
[10] 高蕾蕾. 牡丹籽蛋白的理化和功能特性及多肽的抗氧化活性研究[D]. 济南: 齐鲁工业大学, 2018.
GAO L L. Study on physicochemical and functional properties of tree peony seed protein and antioxidant activity of polypeptides[D]. Jinan: Qilu University of Technology, 2018.
[11] SHAO T T, HUANG K. Network pharmacology-based analysis on Lonicera japonica for chronic osteomyelitis treatment[J]. Journal of Oncology, 2022, 2022:1706716.
[12] 卢韵君. 鱼源胶原蛋白肽酶解工艺及其分子量检测方法研究[D]. 广州: 华南理工大学, 2016.
LU Y J. Enzymatic hydrolysis and molecular weight detection method of fish collagen peptide[D]. Guangzhou: South China University of Technology, 2016.
[13] 宋永令, 李江河, 王若兰. 谷朊粉糖基化改性对其结构及溶解性的影响[J]. 中国粮油学报, 2016, 31(12):125-131; 138.
SONG Y L, LI J H, WANG R L. Structure and solubility of gluten-polysaccharide conjugates[J]. Journal of the Chinese Cereals and Oils Association, 2016, 31(12):125-131; 138.
[14] YANG Z, MO Y N, CHENG F, et al. Antioxidant effects and potential molecular mechanism of action of Limonium aureum extract based on systematic network pharmacology[J]. Frontiers in Veterinary Science, 2022, 8:775490.
[15] FAMUWAGUN A A, ALASHI A M, GBADAMOSI O S, et al. Antioxidant and enzymes inhibitory properties of Amaranth leaf protein hydrolyzates and ultrafiltration peptide fractions[J]. Journal of Food Biochemistry, 2021, 45(3): e13396.
[16] YANG L H, GUO Z L, WEI J Q, et al. Extraction of low molecular weight peptides from bovine bone using ultrasound-assisted double enzyme hydrolysis: Impact on the antioxidant activities of the extracted peptides[J]. LWT, 2021, 146:111470.
[17] HYMAN L M, FRANZ K J. Probing oxidative stress: Small molecule fluorescent sensors of metal ions, reactive oxygen species, and thiols[J]. Coordination Chemistry Reviews, 2012, 256(19-20):2333-2356.
[18] QIAN Z J, JUNG W K, BYUN H G, et al. Protective effect of an antioxidative peptide purified from gastrointestinal digests of oyster, Crassostrea gigas against free radical induced DNA damage[J]. Bioresource Technology, 2008, 99(9):3365-3371.
[19] KIMATU B M, FANG D L, ZHAO L Y, et al. Agaricus bisporus peptide fractions confer cytoprotective ability against hydrogen peroxide-induced oxidative stress in HepG2 and Caco-2 cells[J]. Journal of Food Measurement and Characterization, 2020, 14(5):2503-2519.
[20] PENG B, CAI B N, PAN J Y. Octopus-derived antioxidant peptide protects against hydrogen peroxide-induced oxidative stress in IEC-6 cells[J]. Food Science & Nutrition, 2022, 10(11):4049-4058.
[21] JELIC M D, MANDIC A D, MARICIC S M, et al. Oxidative stress and its role in cancer[J]. Journal of Cancer Research and Therapeutics, 2021, 17(1):22-28.
[22] MA J, ZENG X K, ZHOU M, et al. Inhibitory effect of low-molecular-weight peptides (0-3 kDa) from Spirulina platensis on H2O2-induced oxidative damage in L02 human liver cells[J]. Bioresources and Bioprocessing, 2021, 8(1):36.
[23] ZHAO H M, RUAN H H, LI H T. Progress in the research of GSH in cells[J]. Chinese Science Bulletin, 2011, 56(28):3057.
[24] PRABHA N, GURU A, HARIKRISHNAN R, et al. Neuroprotective and antioxidant capability of RW20 peptide from histone acetyltransferases caused by oxidative stress-induced neurotoxicity in in vivo zebrafish larval model[J]. Journal of King Saud University-Science, 2022, 34(3):101861.
[25] WANG L Y, DING L, YU Z P, et al. Intracellular ROS scavenging and antioxidant enzyme regulating capacities of corn gluten meal-derived antioxidant peptides in HepG2 cells[J]. Food Research International, 2016, 90:33-41.
[26] 穆秋霞, 赵玉滨, 董宪慧, 等. 英国红芸豆抗氧化肽组分对H2O2诱导PC12细胞氧化应激损伤的保护作用[J]. 食品工业科技, 2022, 43(8):348-356.
MU Q X, ZHAO Y B, DONG X H, et al. Protective effects of British red kidney bean antioxidant peptide components on H2O2 induced oxidative stress damage in PC12 cells[J]. Science and Technology of Food Industry, 2022, 43(8):348-356.
[27] HE Y, BU L J, XIE H D, et al. Characteristics of antioxidant substances and identification of antioxidant peptides in duck embryo eggs[J]. British Poultry Science, 2022, 63(6):779-787.
[28] HUSSAIN M, IKRAM W, IKRAM U. Role of c-Src and reactive oxygen species in cardiovascular diseases[J]. Molecular Genetics and Genomics: MGG, 2023, 298(2):315-328.
[29] 伍鹏龙, 魏盟, 朱伟. Src信号通路及在心力衰竭病理生理中的作用[J]. 国际心血管病杂志, 2013, 40(1):6-8; 15.
WU P L, WEI M, ZHU W. Src signaling pathway and its role in pathophysiology of heart failure[J]. International Journal of Cardiovascular Disease, 2013, 40(1):6-8; 15.
[30] NITURE S K, JAIN A K, SHELTON P M, et al. Src subfamily kinases regulate nuclear export and degradation of transcription factor Nrf2 to switch off Nrf2-mediated antioxidant activation of cytoprotective gene expression[J]. The Journal of Biological Chemistry, 2011, 286(33):28821-28834.
[31] WANG X C, CROWE P J, GOLDSTEIN D, et al. STAT3 inhibition, a novel approach to enhancing targeted therapy in human cancers (review)[J]. International Journal of Oncology, 2012, 41(4):1181-1191.
[32] BARRY S P, TOWNSEND P A, MCCORMICK J, et al. STAT3 deletion sensitizes cells to oxidative stress[J]. Biochemical and Biophysical Research Communications, 2009, 385(3):324-329.
[33] MO Y N, CHENG F, YANG Z, et al. Antioxidant activity and the potential mechanism of the fruit from Ailanthus altissima swingle[J]. Frontiers in Veterinary Science, 2021, 8:784898.
[34] CHEN M L, SU W X, CHEN F L, et al. Mechanisms underlying the therapeutic effects of 4-octyl itaconate in treating sepsis based on network pharmacology and molecular docking[J]. Frontiers in Genetics, 2022, 13:1056405.
[35] MADREITER-SOKOLOWSKI C T, THOMAS C, RISTOW M. Interrelation between ROS and Ca2+ in aging and age-related diseases[J]. Redox Biology, 2020, 36:101678.
[36] 夏悦昕, 刘志远, 宋文倩, 等. 先天性纯红细胞再生障碍性贫血氧化应激相关差异表达基因的生物信息学分析[J]. 临床输血与检验, 2023, 25(1):82-87.
XIA Y X, LIU Z Y, SONG W Q, et al. Identification of key genes and pathways associated with DBA by bioinformatics analysis[J]. Journal of Clinical Transfusion and Laboratory Medicine, 2023, 25(1):82-87.
文章导航

/