研究报告

甘草提取物对Staphylococcus aureus的抑菌活性及作用机理

  • 张舒涵 ,
  • 梁海运 ,
  • 孙佳慧 ,
  • 周瑾 ,
  • 宋丽雅
展开
  • 1(北京工商大学 化学材料与工程学院,北京,100048)
    2(北京植物资源研究与开发重点实验室,中国轻工化妆品重点实验室,北京工商大学,北京,100048)
第一作者:硕士研究生(宋丽雅教授为通信作者,E-mail:songly@th.btbu.edu.cn)

收稿日期: 2023-07-13

  修回日期: 2023-08-21

  网络出版日期: 2024-06-11

基金资助

2022年北京工商大学科研能力提升项目

Antimicrobial activity of licorice extract against Staphylococcus aureus and its underlying mechanism of action

  • ZHANG Shuhan ,
  • LIANG Haiyun ,
  • SUN Jiahui ,
  • ZHOU Jin ,
  • SONG Liya
Expand
  • 1(School of Chemical Materials and Engineering, Beijing Technology and Business University, Beijing 100048, China)
    2(Beijing Key Laboratory of Plant Resources Research and Development, China Key Laboratory of Light Industry Cosmetics, Beijing Technology and Business University, Beijing 100048, China)

Received date: 2023-07-13

  Revised date: 2023-08-21

  Online published: 2024-06-11

摘要

食源性病菌为食品安全带来了巨大挑战,甘草提取物作为食品添加剂对金黄色葡萄球菌(Staphylococcus aureus)具有良好的抑菌作用,可作为天然食品防腐剂的候选原料,但目前对其抑菌机理的研究还不深入,影响了其应用。为探究甘草提取物对S.aureus的抑菌机理,该研究通过生长曲线、氧化损伤实验、细胞膜壁分析、蛋白质分析和DNA分析,评价了甘草提取物对S.aureus的抑菌作用机制。结果表明,甘草提取物导致S.aureus核酸渗漏,说明其膜完整性被破坏;同时,甘草提取物降低了几种能量代谢酶:琥珀酸脱氢酶(succinate dehydrogenase,SDH)和总ATP酶的活力;此外,光谱和竞争分析表明,甘草提取物与DNA发生了静电结合和凹槽结合。总之,甘草提取物主要是通过对S.aureus细胞壁膜、蛋白质合成、细菌代谢活力和遗传物质发挥作用,从而抑制其生长。该研究为甘草提取物在食品防腐方面的应用提供了理论基础。

本文引用格式

张舒涵 , 梁海运 , 孙佳慧 , 周瑾 , 宋丽雅 . 甘草提取物对Staphylococcus aureus的抑菌活性及作用机理[J]. 食品与发酵工业, 2024 , 50(10) : 259 -265 . DOI: 10.13995/j.cnki.11-1802/ts.036761

Abstract

Foodborne pathogens present a significant challenge to food safety.Licorice extract, when used as a food additive, has demonstrated effective antimicrobial properties against Staphylococcus aureus.This positions it as a potential candidate for natural food preservatives.However, a comprehensive understanding of its antimicrobial mechanisms remains limited, impeding its broader application.To elucidate the inhibitory mechanism of licorice extract against S.aureus, this study employed growth curve analysis, oxidative damage assays, cell membrane analysis, protein assessment, and DNA analysis to evaluate the mode of antimicrobial action.Results showed that licorice extract led to nucleic acid leakage in S.aureus, indicating compromised membrane integrity.Concurrently, the extract reduced the activity of key metabolic enzymes including succinate dehydrogenase (SDH) and overall ATPase.Additionally, spectral and competitive analyses revealed that licorice extract bound to DNA via electrostatic and groove interactions.The comprehensive analysis concluded that the antimicrobial effect of licorice extract on S.aureus could be attributed to its impact on the bacterial cell wall, protein synthesis, metabolic vitality, and genetic material, thereby inhibiting its growth.This study provides a theoretical foundation for the application of licorice extract as a food preservative.

参考文献

[1] DE JESUS J H F, SZILáGYI I M, REGDON G Jr, et al. Thermal behavior of food preservative sorbic acid and its derivates[J]. Food Chemistry, 2021, 337:127770.
[2] ALMADIY A A, NENAAH G E, AL ASSIUTY B A, et al. Chemical composition and antibacterial activity of essential oils and major fractions of four Achillea species and their nanoemulsions against foodborne bacteria[J]. LWT-Food Science and Technology, 2016, 69:529-537.
[3] 黄艳娥, 刘海波. 食品防腐剂对人体健康的影响及发展趋势[J]. 化工中间体, 2005(7):1-6.
HUANG Y E, LIU H B. The affect of food preservatives on human health and the future development[J]. Chemincal Intermediate, 2005(7):1-6.
[4] WAKABAYASHI Y, UMEDA K, YONOGI S, et al. Staphylococcal food poisoning caused by Staphylococcus argenteus harboring staphylococcal enterotoxin genes[J]. International Journal of Food Microbiology, 2018, 265:23-29.
[5] 王彩君, 翟宇. 甘草的生物功能及其在畜禽生产中的应用[J]. 饲料研究, 2023, 46(8):135-139.
WANG C J, ZHAI Y. Biological function of licorice and its application in livestock and poultry production[J]. Feed Research, 2023, 46(8):135-139.
[6] JU J, YAO W R, SUN S L, et al. Assessment of the antibacterial activity and the main bacteriostatic components from bayberry fruit extract[J]. International Journal of Food Properties, 2018, 21(1):1043-1051.
[7] ARAYA-CONTRERAS T, VEAS R, ESCOBAR C A, et al. Antibacterial effect ofLuma apiculata(DC.) burret extracts in clinically important bacteria[J]. International Journal of Microbiology, 2019, 2019:7803726.
[8] GOEL S, MISHRA P. Thymoquinone inhibits biofilm formation and has selective antibacterial activity due to ROS generation[J]. Applied Microbiology and Biotechnology, 2018, 102(4):1955-1967.
[9] MORIN M P, BEDRAN T B L, FOURNIER-LARENTE J, et al. Green tea extract and its major constituent epigallocatechin-3-gallate inhibit growth and halitosis-related properties of Solobacterium moorei[J]. BMC Complementary and Alternative Medicine, 2015, 15:48.
[10] XIANG Q S, KANG C D, NIU L Y, et al. Antibacterial activity and a membrane damage mechanism of plasma-activated water against Pseudomonas deceptionensis CM2[J]. LWT, 2018, 96:395-401.
[11] LIU G R, SONG Z Q, YANG X L, et al. Antibacterial mechanism of bifidocin A, a novel broad-spectrum bacteriocin produced by Bifidobacterium animalis BB04[J]. Food Control, 2016, 62:309-316.
[12] 刁明明. 半乳糖基月桂酸甘油单酯的抑菌活性及机理的研究[D]. 南京: 南京农业大学, 2016.
DIAO M M. Antibacterial Activity and Mechanism of Monolauroyl-Galactosylglycerol against Bacterial[D]. Nanjing: Nanjing Agricultural University, 2016.
[13] GUO Y R, LIU Y, ZHANG Z H, et al. The antibacterial activity and mechanism of action of luteolin against Trueperella pyogenes[J]. Infection and Drug Resistance, 2020, 13:1697-1711.
[14] WU Y P, BAI J R, ZHONG K, et al. A dual antibacterial mechanism involved in membrane disruption and DNA binding of 2R, 3R-dihydromyricetin from pine needles of Cedrus deodara against Staphylococcus aureus[J]. Food Chemistry, 2017, 218:463-470.
[15] HEGDE A H, PRASHANTH S N, SEETHARAMAPPA J. Interaction of antioxidant flavonoids with calf thymus DNA analyzed by spectroscopic and electrochemical methods[J]. Journal of Pharmaceutical and Biomedical Analysis, 2012, 63:40-46.
[16] LYU M X, WANG M W, LU K, et al. DNA/Lysozyme-binding affinity study of novel peptides from TAT (47-57) and BRCA1 (782-786) in vitro by spectroscopic analysis[J]. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 2019, 209:109-117.
[17] DWYER D J, BELENKY P A, YANG J H, et al. Antibiotics induce redox-related physiological alterations as part of their lethality[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(20): E2100-E2109.
[18] GOSWAMI M, MANGOLI S H, JAWALI N. Involvement of reactive oxygen species in the action of ciprofloxacin against Escherichia coli[J]. Antimicrobial Agents and Chemotherapy, 2006, 50(3):949-954.
[19] YUN J, LEE H, KO H J, et al. Fungicidal effect of isoquercitrin via inducing membrane disturbance[J]. Biochimica et Biophysica Acta, 2015, 1848(2):695-701.
[20] ZHU Y L, ZHANG S. Antibacterial activity and mechanism of lacidophilin from Lactobacillus pentosus against Staphylococcus aureus and Escherichia coli[J]. Frontiers in Microbiology, 2020, 11:582349.
[21] 彭勇. 可食性壳聚糖活性包装膜成膜组分研究[D]. 上海: 上海交通大学, 2014.
PENG Y. Study on film-forming components of edible chitosan active packaging film[D].Shanghai: Shanghai Jiao Tong University, 2014.
[22] STENDEL R, BIEFER H R C, DÉKÁNY G M, et al. The antibacterial substance taurolidine exhibits anti-neoplastic action based on a mixed type of programmed cell death[J]. Autophagy, 2009, 5(2):194-210.
[23] SHU H Z, CHEN H M, WANG X L, et al. Antimicrobial activity and proposed action mechanism of 3-carene against Brochothrix thermosphacta and Pseudomonas fluorescens[J]. Molecules, 2019, 24(18):3246.
[24] GULCAN H, OZTURK I C, ARSLAN S. Alterations in antioxidant enzyme activities in cerebrospinal fluid related with severity of hypoxic ischemic encephalopathy in newborns[J]. Biology of the Neonate, 2005, 88(2):87-91.
[25] 张丽, 高健, 刘长青, 等. 耐受性工程调控微生物细胞工厂胁迫抗性[J]. 生物工程学报, 2022, 38(4):1373-1389.
ZHANG L, GAO J, LIU C Q, et al. Tolerance engineering regulates stress resistance of microbial cell factory[J]. Chinese Journal of Biotechnology, 2022, 38(4):1373-1389.
[26] LIU B M, BAI C L, ZHANG J, et al. In vitro study on the interaction of 4, 4-dimethylcurcumin with calf thymus DNA[J]. Journal of Luminescence, 2015, 166:48-53.
[27] PRABHAKARAN V, JEYASUNDARI J, VASANTHA V S, et al. Interaction of two flavonoids with calf thymus dna: A multi-spectroscopic, electrochemical and molecular modelling approach[J]. European Chemical Bulletin, 2018, 7(1):10.
[28] SINGH V, PAL A, DAROKAR M P. A polyphenolic flavonoid glabridin: Oxidative stress response in multidrug-resistant Staphylococcus aureus[J]. Free Radical Biology & Medicine, 2015, 87:48-57.
[29] HARAGUCHI H, TANIMOTO K, TAMURA Y, et al. Mode of antibacterial action of retrochalcones from Glycyrrhiza inflata[J]. Phytochemistry, 1998, 48(1):125-129.
文章导航

/