[1] 汤石生, 刘军, 龚丽, 等. 果蔬保鲜贮藏技术研究进展[J]. 现代农业装备, 2018(4):67-73.
TANG S S, LIU J, GONG L, et al. Research progress on preservation of fruit and vegetable[J]. Modern Agricultural Equipment, 2018(4):67-73.
[2] 梁泽, 王蕾, 杨明依, 等. 定量蛋白质组学在果蔬采后商品化处理中的研究现状及进展[J]. 浙江大学学报(农业与生命科学版), 2020, 46(1):8-16; 2.
LIANG Z, WANG L, YANG M Y, et al. Status and progress in quantitative proteomic study of postharvest fruits and vegetables during commercial treatment[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1):8-16; 2.
[3] JORRÍN-NOVO J V, MALDONADO A M, ECHEVARRÍA-ZOMEÑO S, et al. Plant proteomics update (2007-2008): Second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge[J]. Journal of Proteomics, 2009, 72(3):285-314.
[4] GAPPER N E, MCQUINN R P, GIOVANNONI J J. Molecular and genetic regulation of fruit ripening[J]. Plant Molecular Biology, 2013, 82(6):575-591.
[5] BARSAN C, ZOUINE M, MAZA E, et al. Proteomic analysis of chloroplast-to-chromoplast transition in tomato reveals metabolic shifts coupled with disrupted thylakoid biogenesis machinery and elevated energy-production components[J]. Plant Physiology, 2012, 160(2):708-725.
[6] SERAGLIO S K T, SCHULZ M, NEHRING P, et al. Nutritional and bioactive potential of myrtaceae fruits during ripening[J]. Food Chemistry, 2018, 239:649-656.
[7] ZHU X Y, SONG Z Y, LI Q M, et al. Physiological and transcriptomic analysis reveals the roles of 1-MCP in the ripening and fruit aroma quality of banana fruit (Fenjiao)[J]. Food Research International, 2020, 130:108968.
[8] MUKHERJEE S. Recent advancements in the mechanism of nitric oxide signaling associated with hydrogen sulfide and melatonin crosstalk during ethylene-induced fruit ripening in plants[J]. Nitric Oxide: Biology and Chemistry, 2019, 82:25-34.
[9] 刘存德. 果实成熟及其基因调控[J]. 生物学通报, 1999, 34(1): 5-7.
LIU C D. Fruit ripening and its gene regulation[J]. Bulletin of Biology, 1999, 34(1): 5-7.
[10] TANG H M, ZHANG X, GONG B, et al. Proteomics and metabolomics analysis of tomato fruit at different maturity stages and under salt treatment[J]. Food Chemistry, 2020, 311:126009.
[11] SALZANO A M, SOBOLEV A, CARBONE V, et al. A proteometabolomic study of Actinidia deliciosa fruit development[J]. Journal of Proteomics, 2018, 172:11-24.
[12] CHIN C F, TEOH E Y, CHEE M J Y, et al. Comparative proteomic analysis on fruit ripening processes in two varieties of tropical mango (Mangifera indica)[J]. The Protein Journal, 2019, 38(6):704-715.
[13] ZHANG H P, SU Y, YU Q, et al. Quantitative proteomic analysis of pear (Pyrus pyrifolia cv. “Hosui”) flesh provides novel insights about development and quality characteristics of fruit[J]. Planta, 2021, 253(3):69.
[14] XU Y X, LIU J J, ZANG N N, et al. Effects of calcium application on apple fruit softening during storage revealed by proteomics and phosphoproteomics[J]. Horticultural Plant Journal, 2022, 8(4):408-422.
[15] 林河通, 叶陈亮. 钙对果蔬成熟衰老的调节[J]. 福建果树, 1993(2):27-30.
LIN H T, YE C L. Regulation of calcium on ripening and senescence of fruits and vegetables[J]. Fujian Fruits, 1993(2):27-30.
[16] PONTIGGIA D, SPINELLI F, FABBRI C, et al. Changes in the microsomal proteome of tomato fruit during ripening[J]. Scientific Reports, 2019, 9(1):14350.
[17] 米国华,陈范骏,张福锁.作物养分高效的生理基础与遗传改良[M].北京:中国农业大学出版社,2012.
MI G H, CHEN F J , ZHANG F S. Physiological Basis and Genetic Improvement of Nutrient Use Efficiency in Crops[M]. Beijing: China Agricultural University Pass, 2012.
[18] HAO J, LI Q, YU H J, et al. Comparative proteomic analysis of cucumber fruits under nitrogen deficiency at the fruiting stage[J]. Horticultural Plant Journal, 2021, 7(1):59-72.
[19] WILKIE J D, SEDGLEY M, OLESEN T. Regulation of floral initiation in horticultural trees[J]. Journal of Experimental Botany, 2008, 59(12):3215-3228.
[20] 任晓琴, 王葳, 杨静慧, 等. 环剥对‘冬枣’果实品质的影响[J]. 天津农学院学报, 2023, 30(1):32-35; 41.
REN X Q, WANG W, YANG J H, et al. Effect of girdling on ‘Dongzao’ fruit quality[J]. Journal of Tianjin Agricultural University, 2023, 30(1):32-35; 41.
[21] MICHAILIDIS M, KARAGIANNIS E, TANOU G, et al. Proteomic and metabolic analysis reveals novel sweet cherry fruit development regulatory points influenced by girdling[J]. Plant Physiology and Biochemistry: PPB, 2020, 149:233-244.
[22] 尤丽, 党娅. 蓝莓花青素的代谢及功能特性研究进展[J]. 食品研究与开发, 2021, 42(14):193-200.
YOU L, DANG Y. Research progress in metabolic and functional properties of blueberry anthocyanins[J]. Food Research and Development, 2021, 42(14):193-200.
[23] LI X B, JIN L, PAN X H, et al. Proteins expression and metabolite profile insight into phenolic biosynthesis during highbush blueberry fruit maturation[J]. Food Chemistry, 2019, 290:216-228.
[24] SONG J, CAMPBELLPALMER L, VINQVIST-TYMCHUK M, et al. Proteomic changes in antioxidant system in strawberry during ripening[J]. Frontiers in Plant Science, 2020, 11:594156.
[25] HUANG J, CHEN X, HE A B, et al. Integrative morphological, physiological, proteomics analyses of jujube fruit development provide insights into fruit quality domestication from wild jujube to cultivated jujube[J]. Frontiers in Plant Science, 2021, 12:773825.
[26] RÖDIGER A, AGNE B, DOBRITZSCH D, et al. Chromoplast differentiation in bell pepper (Capsicum annuum) fruits[J]. The Plant Journal, 2021, 105(5):1431-1442.
[27] ASHWIN N M R, BARNABAS L, RAMESH SUNDAR A, et al. Advances in proteomic technologies and their scope of application in understanding plant-pathogen interactions[J]. Journal of Plant Biochemistry and Biotechnology, 2017, 26(4):371-386.
[28] 吴瑞瑞, 叶云锋, 陈松余, 等. 梨品种‘玉露香’抗火疫病蛋白质组学分析[J]. 植物保护, 2022, 48(6):90-97; 104.
WU R R, YE Y F, CHEN S Y, et al. Proteomics analysis on the resistance of pear cultivar ‘Yuluxiang’ to fire blight disease[J]. Plant Protection, 2022, 48(6):90-97; 104.
[29] FAN K T, HSU Y, YEH C F, et al. Quantitative proteomics reveals the dynamic regulation of the tomato proteome in response to Phytophthora infestans[J]. International Journal of Molecular Sciences, 2021, 22(8):4174.
[30] LI X D, BI X Y, AN M N, et al. iTRAQ-Based proteomic analysis of watermelon fruits in response to cucumber green mottle mosaic virus infection[J]. International Journal of Molecular Sciences, 2020, 21(7):2541.
[31] DE A SOARES E, WERTH E G, MADROÑERO L J, et al. Label-free quantitative proteomic analysis of pre-flowering PMeV-infected Carica papaya L[J]. Journal of Proteomics, 2017, 151:275-283.
[32] 焦文晓, 王晓梅, 范新光, 等. 病程相关蛋白在采后果蔬诱导抗病性中的研究进展[J]. 保鲜与加工, 2020, 20(1):206-211.
JIAO W X, WANG X M, FAN X G, et al. Advances of research on pathogenesis-related protein in induction of disease resistance of postharvest fruits and vegetables[J]. Storage and Process, 2020, 20(1):206-211.
[33] WANG S P, ZHOU Y H, LUO W, et al. Primary metabolites analysis of induced citrus fruit disease resistance upon treatment with oligochitosan, salicylic acid and Pichia membranaefaciens[J]. Biological Control, 2020, 148:104289.
[34] 杨晨宇. 蛋白激发子BcGs1激发番茄抗病性的免疫调控机制研究[D]. 北京:中国农业科学院, 2017.
YANG C Y. Mechanism of elicitor BcGs1 to trigger tomato immunity against botrytis cinerna[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017.
[35] 王静. 能量亏缺对果蔬采后组织衰老、褐变与病害的影响[J]. 保鲜与加工, 2020, 20(1):237-242.
WANG J. Effects of energy deficiency on tissue senescence, browning and diseases of postharvest fruits and vegetables[J]. Storage and Process, 2020, 20(1):237-242.
[36] 许佳妮, 曹琦, 邓丽莉, 等. 低成熟度柑橘果实油胞病发病进程中的膜脂代谢[J]. 食品科学, 2016, 37(24):262-270.
XU J N, CAO Q, DENG L L, et al. Mechanisms of membrane lipid metabolism in Citrus fruit at low ripening stage in response to oleocellosis[J]. Food Science, 2016, 37(24):262-270.
[37] KÄRKÖNEN A, KUCHITSU K. Reactive oxygen species in cell wall metabolism and development in plants[J]. Phytochemistry, 2015, 112:22-32.
[38] TIAN S P, QIN G Z, LI B Q. Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity[J]. Plant Molecular Biology, 2013, 82(6):593-602.
[39] 许佳妮, 邓丽莉, 曾凯芳. 磷脂酶D在果蔬采后逆境胁迫及衰老过程中的作用[J]. 食品工业科技, 2015, 36(5):392-395; 399.
XU J N, DENG L L, ZENG K F. Role of phospholipase D in postharvest fruits and vegetables under stress and during senescence[J]. Science and Technology of Food Industry, 2015, 36(5):392-395; 399.
[40] 肖双灵. 1-MCP引起番木瓜后熟障碍的差异蛋白质组学研究及关键蛋白分析[D]. 广州: 华南农业大学, 2017.
XIAO S L. Differential protein omics study and key protein analysis of papaya ripening disorder caused by 1-MCP[D]. Guangzhou: South China Agricultural University, 2017.
[41] GONG Y H, SONG J, DEELL J, et al. Proteomic changes in association with storage quality of ‘Honeycrisp’ apples after pre and postharvest treatment of 1-MCP[J]. Postharvest Biology and Technology, 2023, 201:112362.
[42] XIE G F, YANG C, FEI Y, et al. Physiological and proteomic analyses of 1-MCP treatment on lignification in fresh common bean (Phaseolus vulgaris L) during storage[J]. Postharvest Biology and Technology, 2020, 160:111041.
[43] GUO X M, LUO T, HAN D M, et al. Integrated transcriptomics, proteomics, and metabolomics analysis reveals the mechanism of litchi pulp deterioration during long-term cold storage[J]. Postharvest Biology and Technology, 2023, 195:112140.
[44] CHENG S B, OUYANG H, GUO W B, et al. Proteomic and physiological analysis of ‘Korla’ fragrant pears (Pyrus × brestschneideri Rehd) during postharvest under cold storage[J]. Scientia Horticulturae, 2021, 288:110428.
[45] DE VASCONCELOS FACUNDO H V, SCHMITZ G J H, CATALDI T R, et al. Shotgun proteomics of Nanicão and Prata bananas reveals changes that may account for their different resistance to low temperature[J]. Scientia Horticulturae, 2022, 306:111454.
[46] SALAZAR-SALAS N Y, CHAIREZ-VEGA D A, VEGA-ALVAREZ M, et al. Proteomic changes in mango fruit peel associated with chilling injury tolerance induced by quarantine hot water treatment[J]. Postharvest Biology and Technology, 2022, 186:111838.
[47] MATA C I, HERTOG M L A T M, VAN RAEMDONCK G, et al. Omics analysis of the ethylene signal transduction in tomato as a function of storage temperature[J]. Postharvest Biology and Technology, 2019, 155:1-10.
[48] CHEN S, CHEN X N, FAN J F, et al. iTRAQ proteomics reveals changes in the lettuce (Lactuca sativa L. Grand Rapid) proteome related to colour and senescence under modified atmosphere packaging[J]. Journal of the Science of Food and Agriculture, 2019, 99(4):1908-1918.
[49] LUO F, CHENG S C, CAI J H, et al. Chlorophyll degradation and carotenoid biosynthetic pathways: Gene expression and pigment content in broccoli during yellowing[J]. Food Chemistry, 2019, 297:124964.
[50] ZHANG Y X, MA Y L, GUO Y Y, et al. Physiological and iTRAQ-based proteomic analyses for yellowing of postharvest broccoli heads under elevated O2 controlled atmosphere[J]. Scientia Horticulturae, 2022, 294:110769.
[51] ZHANG Y X, CHEN Y, GUO Y Y, et al. Proteomics study on the changes in amino acid metabolism during broccoli senescence induced by elevated O2 storage[J]. Food Research International, 2022, 157:111418.
[52] LIN R M, ZHANG L J, YANG X Q, et al. Responses of the mushroom Pleurotus ostreatus under different CO2 concentration by comparative proteomic analyses[J]. Journal of Fungi, 2022, 8(7):652.