综述与专题评论

蛋白质组学在果蔬保鲜中的研究现状

  • 林子沁 ,
  • 梁富浩 ,
  • 杨梦娇 ,
  • 郑恩岚 ,
  • 李娇 ,
  • 吕芳娥 ,
  • 姜瑜倩 ,
  • 李喜宏
展开
  • (天津科技大学 食品科学与工程学院/天津科技大学省部共建食品营养与安全国家重点实验室,天津,300457)
第一作者:硕士研究生(李喜宏教授为通信作者,E-mail:lixihong@tust.edu.cn)

收稿日期: 2023-05-11

  修回日期: 2023-07-10

  网络出版日期: 2024-06-11

基金资助

山东省重点研发计划(2021CXGC010809);中国博士后科学基金(2022M712378);“泉城学者”建设工程

Current status of proteomics research in fruit and vegetable preservation

  • LIN Ziqin ,
  • LIANG Fuhao ,
  • YANG Mengjiao ,
  • ZHENG Enlan ,
  • LI Jiao ,
  • LYU Fange ,
  • JIANG Yuqian ,
  • LI Xihong
Expand
  • (College of Food Science and Engineering, Tianjin University of Science and Technology/State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China)

Received date: 2023-05-11

  Revised date: 2023-07-10

  Online published: 2024-06-11

摘要

果蔬采后生理病理变化是果蔬保鲜的主要研究内容之一,因此对果蔬采后生物学变化过程的探究是减少果蔬采后损失和提高贮藏品质的首要任务。目前,高通量蛋白质组学作为后基因时代的一种重要分子分析技术被广泛应用于果蔬及其贮藏过程中蛋白质表达规律研究。通过总结近五年国内外蛋白质组学技术在果蔬保鲜中的研究进展,简述了呼吸跃变型与非呼吸跃变型果蔬在果实成熟衰老过程中的蛋白表达差异,比较了同属不同种的果蔬间抗病性差异表达蛋白,分析了1-甲基环丙烯、低温贮藏、气调贮藏对果蔬品质的影响,对果蔬采后保鲜研究具有重要指导意义。另外,以蛋白质组学为桥梁,建立起与基因组学、转录组学和代谢组学等多组学联用技术,以此通过复杂的通路和网络关联来整合不同组学的数据,分析各组学之间的调控关系,揭示采后保鲜技术提高果蔬贮藏品质的相关机制,将是果蔬保鲜相关研究领域的未来发展方向。

本文引用格式

林子沁 , 梁富浩 , 杨梦娇 , 郑恩岚 , 李娇 , 吕芳娥 , 姜瑜倩 , 李喜宏 . 蛋白质组学在果蔬保鲜中的研究现状[J]. 食品与发酵工业, 2024 , 50(10) : 371 -380 . DOI: 10.13995/j.cnki.11-1802/ts.036116

Abstract

The study of postharvest biological processes in fruits and vegetables is the main task to reduce postharvest losses and improve storage quality because postharvest physiological and pathological changes in fruits and vegetables are one of the main research contents in fruit and vegetable preservation.Currently, high-throughput proteomics, as an important molecular analysis technology in the post-genetic era, is widely used to study protein expression patterns in fruits and vegetables and their storage processes.By summarizing the research progress of proteomics technology in fruit and vegetable preservation in the past five years, this paper briefly described the protein expression differences between climacteric and non-climacteric fruits and vegetables during fruit ripening and senescence, compared the differential expression proteins of disease resistance between fruits and vegetables of the same genus and different species, and analyzed the effects of 1-methylcyclo-propene, low-temperature storage, and gas storage on the quality of fruits and vegetables, which were important guidelines for postharvest preservation of fruits and vegetables.In addition, proteomics are used as a bridge to establish a multi-omics linkage technology with genomics, transcriptomics, and metabolomics, integrating data from different omics through complex pathways and network associations, analyzing the regulatory relationships among the omics, and revealing the mechanisms related to the postharvest preservation technology to improve the storage quality of fruits and vegetables, which would be the future development direction of fruit and vegetable preservation-related research fields.

参考文献

[1] 汤石生, 刘军, 龚丽, 等. 果蔬保鲜贮藏技术研究进展[J]. 现代农业装备, 2018(4):67-73.
TANG S S, LIU J, GONG L, et al. Research progress on preservation of fruit and vegetable[J]. Modern Agricultural Equipment, 2018(4):67-73.
[2] 梁泽, 王蕾, 杨明依, 等. 定量蛋白质组学在果蔬采后商品化处理中的研究现状及进展[J]. 浙江大学学报(农业与生命科学版), 2020, 46(1):8-16; 2.
LIANG Z, WANG L, YANG M Y, et al. Status and progress in quantitative proteomic study of postharvest fruits and vegetables during commercial treatment[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1):8-16; 2.
[3] JORRÍN-NOVO J V, MALDONADO A M, ECHEVARRÍA-ZOMEÑO S, et al. Plant proteomics update (2007-2008): Second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge[J]. Journal of Proteomics, 2009, 72(3):285-314.
[4] GAPPER N E, MCQUINN R P, GIOVANNONI J J. Molecular and genetic regulation of fruit ripening[J]. Plant Molecular Biology, 2013, 82(6):575-591.
[5] BARSAN C, ZOUINE M, MAZA E, et al. Proteomic analysis of chloroplast-to-chromoplast transition in tomato reveals metabolic shifts coupled with disrupted thylakoid biogenesis machinery and elevated energy-production components[J]. Plant Physiology, 2012, 160(2):708-725.
[6] SERAGLIO S K T, SCHULZ M, NEHRING P, et al. Nutritional and bioactive potential of myrtaceae fruits during ripening[J]. Food Chemistry, 2018, 239:649-656.
[7] ZHU X Y, SONG Z Y, LI Q M, et al. Physiological and transcriptomic analysis reveals the roles of 1-MCP in the ripening and fruit aroma quality of banana fruit (Fenjiao)[J]. Food Research International, 2020, 130:108968.
[8] MUKHERJEE S. Recent advancements in the mechanism of nitric oxide signaling associated with hydrogen sulfide and melatonin crosstalk during ethylene-induced fruit ripening in plants[J]. Nitric Oxide: Biology and Chemistry, 2019, 82:25-34.
[9] 刘存德. 果实成熟及其基因调控[J]. 生物学通报, 1999, 34(1): 5-7.
LIU C D. Fruit ripening and its gene regulation[J]. Bulletin of Biology, 1999, 34(1): 5-7.
[10] TANG H M, ZHANG X, GONG B, et al. Proteomics and metabolomics analysis of tomato fruit at different maturity stages and under salt treatment[J]. Food Chemistry, 2020, 311:126009.
[11] SALZANO A M, SOBOLEV A, CARBONE V, et al. A proteometabolomic study of Actinidia deliciosa fruit development[J]. Journal of Proteomics, 2018, 172:11-24.
[12] CHIN C F, TEOH E Y, CHEE M J Y, et al. Comparative proteomic analysis on fruit ripening processes in two varieties of tropical mango (Mangifera indica)[J]. The Protein Journal, 2019, 38(6):704-715.
[13] ZHANG H P, SU Y, YU Q, et al. Quantitative proteomic analysis of pear (Pyrus pyrifolia cv. “Hosui”) flesh provides novel insights about development and quality characteristics of fruit[J]. Planta, 2021, 253(3):69.
[14] XU Y X, LIU J J, ZANG N N, et al. Effects of calcium application on apple fruit softening during storage revealed by proteomics and phosphoproteomics[J]. Horticultural Plant Journal, 2022, 8(4):408-422.
[15] 林河通, 叶陈亮. 钙对果蔬成熟衰老的调节[J]. 福建果树, 1993(2):27-30.
LIN H T, YE C L. Regulation of calcium on ripening and senescence of fruits and vegetables[J]. Fujian Fruits, 1993(2):27-30.
[16] PONTIGGIA D, SPINELLI F, FABBRI C, et al. Changes in the microsomal proteome of tomato fruit during ripening[J]. Scientific Reports, 2019, 9(1):14350.
[17] 米国华,陈范骏,张福锁.作物养分高效的生理基础与遗传改良[M].北京:中国农业大学出版社,2012.
MI G H, CHEN F J , ZHANG F S. Physiological Basis and Genetic Improvement of Nutrient Use Efficiency in Crops[M]. Beijing: China Agricultural University Pass, 2012.
[18] HAO J, LI Q, YU H J, et al. Comparative proteomic analysis of cucumber fruits under nitrogen deficiency at the fruiting stage[J]. Horticultural Plant Journal, 2021, 7(1):59-72.
[19] WILKIE J D, SEDGLEY M, OLESEN T. Regulation of floral initiation in horticultural trees[J]. Journal of Experimental Botany, 2008, 59(12):3215-3228.
[20] 任晓琴, 王葳, 杨静慧, 等. 环剥对‘冬枣’果实品质的影响[J]. 天津农学院学报, 2023, 30(1):32-35; 41.
REN X Q, WANG W, YANG J H, et al. Effect of girdling on ‘Dongzao’ fruit quality[J]. Journal of Tianjin Agricultural University, 2023, 30(1):32-35; 41.
[21] MICHAILIDIS M, KARAGIANNIS E, TANOU G, et al. Proteomic and metabolic analysis reveals novel sweet cherry fruit development regulatory points influenced by girdling[J]. Plant Physiology and Biochemistry: PPB, 2020, 149:233-244.
[22] 尤丽, 党娅. 蓝莓花青素的代谢及功能特性研究进展[J]. 食品研究与开发, 2021, 42(14):193-200.
YOU L, DANG Y. Research progress in metabolic and functional properties of blueberry anthocyanins[J]. Food Research and Development, 2021, 42(14):193-200.
[23] LI X B, JIN L, PAN X H, et al. Proteins expression and metabolite profile insight into phenolic biosynthesis during highbush blueberry fruit maturation[J]. Food Chemistry, 2019, 290:216-228.
[24] SONG J, CAMPBELLPALMER L, VINQVIST-TYMCHUK M, et al. Proteomic changes in antioxidant system in strawberry during ripening[J]. Frontiers in Plant Science, 2020, 11:594156.
[25] HUANG J, CHEN X, HE A B, et al. Integrative morphological, physiological, proteomics analyses of jujube fruit development provide insights into fruit quality domestication from wild jujube to cultivated jujube[J]. Frontiers in Plant Science, 2021, 12:773825.
[26] RÖDIGER A, AGNE B, DOBRITZSCH D, et al. Chromoplast differentiation in bell pepper (Capsicum annuum) fruits[J]. The Plant Journal, 2021, 105(5):1431-1442.
[27] ASHWIN N M R, BARNABAS L, RAMESH SUNDAR A, et al. Advances in proteomic technologies and their scope of application in understanding plant-pathogen interactions[J]. Journal of Plant Biochemistry and Biotechnology, 2017, 26(4):371-386.
[28] 吴瑞瑞, 叶云锋, 陈松余, 等. 梨品种‘玉露香’抗火疫病蛋白质组学分析[J]. 植物保护, 2022, 48(6):90-97; 104.
WU R R, YE Y F, CHEN S Y, et al. Proteomics analysis on the resistance of pear cultivar ‘Yuluxiang’ to fire blight disease[J]. Plant Protection, 2022, 48(6):90-97; 104.
[29] FAN K T, HSU Y, YEH C F, et al. Quantitative proteomics reveals the dynamic regulation of the tomato proteome in response to Phytophthora infestans[J]. International Journal of Molecular Sciences, 2021, 22(8):4174.
[30] LI X D, BI X Y, AN M N, et al. iTRAQ-Based proteomic analysis of watermelon fruits in response to cucumber green mottle mosaic virus infection[J]. International Journal of Molecular Sciences, 2020, 21(7):2541.
[31] DE A SOARES E, WERTH E G, MADROÑERO L J, et al. Label-free quantitative proteomic analysis of pre-flowering PMeV-infected Carica papaya L[J]. Journal of Proteomics, 2017, 151:275-283.
[32] 焦文晓, 王晓梅, 范新光, 等. 病程相关蛋白在采后果蔬诱导抗病性中的研究进展[J]. 保鲜与加工, 2020, 20(1):206-211.
JIAO W X, WANG X M, FAN X G, et al. Advances of research on pathogenesis-related protein in induction of disease resistance of postharvest fruits and vegetables[J]. Storage and Process, 2020, 20(1):206-211.
[33] WANG S P, ZHOU Y H, LUO W, et al. Primary metabolites analysis of induced citrus fruit disease resistance upon treatment with oligochitosan, salicylic acid and Pichia membranaefaciens[J]. Biological Control, 2020, 148:104289.
[34] 杨晨宇. 蛋白激发子BcGs1激发番茄抗病性的免疫调控机制研究[D]. 北京:中国农业科学院, 2017.
YANG C Y. Mechanism of elicitor BcGs1 to trigger tomato immunity against botrytis cinerna[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017.
[35] 王静. 能量亏缺对果蔬采后组织衰老、褐变与病害的影响[J]. 保鲜与加工, 2020, 20(1):237-242.
WANG J. Effects of energy deficiency on tissue senescence, browning and diseases of postharvest fruits and vegetables[J]. Storage and Process, 2020, 20(1):237-242.
[36] 许佳妮, 曹琦, 邓丽莉, 等. 低成熟度柑橘果实油胞病发病进程中的膜脂代谢[J]. 食品科学, 2016, 37(24):262-270.
XU J N, CAO Q, DENG L L, et al. Mechanisms of membrane lipid metabolism in Citrus fruit at low ripening stage in response to oleocellosis[J]. Food Science, 2016, 37(24):262-270.
[37] KÄRKÖNEN A, KUCHITSU K. Reactive oxygen species in cell wall metabolism and development in plants[J]. Phytochemistry, 2015, 112:22-32.
[38] TIAN S P, QIN G Z, LI B Q. Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity[J]. Plant Molecular Biology, 2013, 82(6):593-602.
[39] 许佳妮, 邓丽莉, 曾凯芳. 磷脂酶D在果蔬采后逆境胁迫及衰老过程中的作用[J]. 食品工业科技, 2015, 36(5):392-395; 399.
XU J N, DENG L L, ZENG K F. Role of phospholipase D in postharvest fruits and vegetables under stress and during senescence[J]. Science and Technology of Food Industry, 2015, 36(5):392-395; 399.
[40] 肖双灵. 1-MCP引起番木瓜后熟障碍的差异蛋白质组学研究及关键蛋白分析[D]. 广州: 华南农业大学, 2017.
XIAO S L. Differential protein omics study and key protein analysis of papaya ripening disorder caused by 1-MCP[D]. Guangzhou: South China Agricultural University, 2017.
[41] GONG Y H, SONG J, DEELL J, et al. Proteomic changes in association with storage quality of ‘Honeycrisp’ apples after pre and postharvest treatment of 1-MCP[J]. Postharvest Biology and Technology, 2023, 201:112362.
[42] XIE G F, YANG C, FEI Y, et al. Physiological and proteomic analyses of 1-MCP treatment on lignification in fresh common bean (Phaseolus vulgaris L) during storage[J]. Postharvest Biology and Technology, 2020, 160:111041.
[43] GUO X M, LUO T, HAN D M, et al. Integrated transcriptomics, proteomics, and metabolomics analysis reveals the mechanism of litchi pulp deterioration during long-term cold storage[J]. Postharvest Biology and Technology, 2023, 195:112140.
[44] CHENG S B, OUYANG H, GUO W B, et al. Proteomic and physiological analysis of ‘Korla’ fragrant pears (Pyrus × brestschneideri Rehd) during postharvest under cold storage[J]. Scientia Horticulturae, 2021, 288:110428.
[45] DE VASCONCELOS FACUNDO H V, SCHMITZ G J H, CATALDI T R, et al. Shotgun proteomics of Nanicão and Prata bananas reveals changes that may account for their different resistance to low temperature[J]. Scientia Horticulturae, 2022, 306:111454.
[46] SALAZAR-SALAS N Y, CHAIREZ-VEGA D A, VEGA-ALVAREZ M, et al. Proteomic changes in mango fruit peel associated with chilling injury tolerance induced by quarantine hot water treatment[J]. Postharvest Biology and Technology, 2022, 186:111838.
[47] MATA C I, HERTOG M L A T M, VAN RAEMDONCK G, et al. Omics analysis of the ethylene signal transduction in tomato as a function of storage temperature[J]. Postharvest Biology and Technology, 2019, 155:1-10.
[48] CHEN S, CHEN X N, FAN J F, et al. iTRAQ proteomics reveals changes in the lettuce (Lactuca sativa L. Grand Rapid) proteome related to colour and senescence under modified atmosphere packaging[J]. Journal of the Science of Food and Agriculture, 2019, 99(4):1908-1918.
[49] LUO F, CHENG S C, CAI J H, et al. Chlorophyll degradation and carotenoid biosynthetic pathways: Gene expression and pigment content in broccoli during yellowing[J]. Food Chemistry, 2019, 297:124964.
[50] ZHANG Y X, MA Y L, GUO Y Y, et al. Physiological and iTRAQ-based proteomic analyses for yellowing of postharvest broccoli heads under elevated O2 controlled atmosphere[J]. Scientia Horticulturae, 2022, 294:110769.
[51] ZHANG Y X, CHEN Y, GUO Y Y, et al. Proteomics study on the changes in amino acid metabolism during broccoli senescence induced by elevated O2 storage[J]. Food Research International, 2022, 157:111418.
[52] LIN R M, ZHANG L J, YANG X Q, et al. Responses of the mushroom Pleurotus ostreatus under different CO2 concentration by comparative proteomic analyses[J]. Journal of Fungi, 2022, 8(7):652.
文章导航

/