研究报告

大肠杆菌L-丝氨酸脱水酶的表达改善甘氨酸营养缺陷型毕赤酵母L-丝氨酸的生长

  • 刘璐瑶 ,
  • 李康 ,
  • 王世杰 ,
  • 白仲虎 ,
  • 杨艳坤 ,
  • 金坚
展开
  • 1(工业生物技术教育部重点实验室(江南大学),江苏 无锡,214122)
    2(粮食发酵与食品生物制造国家工程研究中心(江南大学),江苏 无锡,214122)
    3(江苏省生物活性制品加工工程技术研究中心,江苏 无锡,214122)
    4(江南大学 生命科学与健康工程学院,江苏 无锡,214122)
第一作者:硕士研究生(杨艳坤副教授和金坚教授为共同通信作者,E-mail:yangyankun@jiangnan.edu.cn;jianjin@jiangnan.edu.cn)

收稿日期: 2024-03-03

  修回日期: 2024-03-27

  网络出版日期: 2024-08-02

基金资助

国家自然科学基金项目(32370054)

Expression of Escherichia coli L-serine dehydratase improves growth of glycine auxotroph Pichia pastoris on serine

  • LIU Luyao ,
  • LI Kang ,
  • WANG Shijie ,
  • BAI Zhonghu ,
  • YANG Yankun ,
  • JIN Jian
Expand
  • 1(The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China)
    2(National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China)
    3(Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China)
    4(School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China)

Received date: 2024-03-03

  Revised date: 2024-03-27

  Online published: 2024-08-02

摘要

氨基酸作为一种迟效碳源无法被微生物快速利用。L-丝氨酸脱水酶(L-serine dehydratase,L-SerDH)可以将L-丝氨酸一步催化为丙酮酸和氨进入中心碳代谢生成生物量,且此过程不需要消耗ATP和还原力。L-丝氨酸是甲酸利用途径(还原性甘氨酸途径)的关键中间体。因此,改善L-丝氨酸的利用可以为甲酸和丝氨酸作为碳源利用提供参考价值。该文对巴斯德毕赤酵母(Pichia pastoris)进行了丝氨酸耐受性实验,结果显示毕赤酵母可以耐受20 g/L丝氨酸。对内源L-丝氨酸脱水酶在毕赤酵母中的表达进行了优化。在甘氨酸营养型毕赤酵母内分别表达了8种异源L-丝氨酸脱水酶,结果表示大肠杆菌tdcG基因编码的L-SerDH对丝氨酸利用改善效果最好,终OD600提高至出发菌株的1.6倍。该研究验证了巴斯德毕赤酵母对L-丝氨酸的耐受性,并筛选得到了较优的L-丝氨酸脱水酶来源,为毕赤酵母的丝氨酸利用提供了更优的酶来源。

本文引用格式

刘璐瑶 , 李康 , 王世杰 , 白仲虎 , 杨艳坤 , 金坚 . 大肠杆菌L-丝氨酸脱水酶的表达改善甘氨酸营养缺陷型毕赤酵母L-丝氨酸的生长[J]. 食品与发酵工业, 2024 , 50(13) : 16 -24 . DOI: 10.13995/j.cnki.11-1802/ts.039062

Abstract

Amino acids cannot be rapidly utilized by microorganisms as a gradually metabolized carbon source.L-serine dehydratase (L-SerDH) catalyzes the one-step conversion of L-serine into pyruvate and ammonia, facilitating central carbon metabolism to generate biomass without the consumption of ATP and reducing power.L-serine is a key intermediate in the formate utilization pathway (reductive glycine pathway).Therefore, improving the utilization of L-serine can provide valuable insights into the utilization of formate and serine as carbon sources.This paper explored serine tolerance of Pichia pastoris.Results demonstrated that P.pastoris exhibited tolerance to 20 g/L of L-serine.Expression optimization of endogenous L-serine dehydratase was carried out in P.pastoris.Eight heterologous L-serine dehydratases were expressed separately in glycine auxotroph P.pastoris.The results indicated that L-SerDH encoded by the E.coli tdcG gene had the best effect on the improvement of serine utilization, with the final OD600 increased to 1.6-fold that of the original strain.This study represents the validation of L-serine tolerance in P.pastoris and screens a superior source of L-serine dehydratase.These findings offer valuable insights into enhancing enzyme sources for serine utilization in P.pastoris.

参考文献

[1] XU G Q, ZHANG X M, XIAO W H, et al.Production of L-serine and its derivative L-cysteine from renewable feedstocks using Corynebacterium glutamicum:Advances and perspectives[J].Critical Reviews in Biotechnology, 2024, 44(3):448-461.
[2] DE LA CRUZ J G, MACHENS F, MESSERSCHMIDT K, et al.Core catalysis of the reductive Glycine pathway demonstrated in yeast[J].ACS Synthetic Biology, 2019, 8(5):911-917.
[3] RENNIG M, MUNDHADA H, WORDOFA G G, et al.Industrializing a bacterial strain for L-serine production through translation initiation optimization[J].ACS Synthetic Biology, 2019, 8(10):2347-2358.
[4] ZHU Q J, ZHANG X M, LUO Y C, et al.L-Serine overproduction with minimization of by-product synthesis by engineered Corynebacterium glutamicum[J].Applied Microbiology and Biotechnology, 2015, 99(4):1665-1673.
[5] 康培. 代谢工程改造大肠杆菌glyA敲除菌株提高L-丝氨酸产量[D].天津:天津大学, 2016.
KANG P.Increased L-serine production by metabolic engineering of glyA knockout E.coli[D].Tianjin:Tianjin University, 2016.
[6] ZHANG X M, XU G Q, SHI J S, et al.Microbial production of L-serine from renewable feedstocks[J].Trends in Biotechnology, 2018, 36(7):700-712.
[7] 王凯, 刘子鹤, 陈必强, 等.微生物利用二氧化碳合成燃料及化学品:第三代生物炼制[J].合成生物学, 2020, 1(1):60-70.
WANG K, LIU Z H, CHEN B Q, et al.Microbial utilization of carbon dioxide to synthesize fuels and chemicals:Third-generation biorefineries[J].Synthetic Biology, 2020, 1(1):60-70.
[8] 程真真, 张健, 高聪, 等.代谢工程改造微生物利用甲酸研究进展 [J].合成生物学, 2023, 4(4):756-778.
CHENG Z Z, ZHANG J, GAO C, et al.Progress in metabolic engineering of microorganisms for the utilization of formate[J].Synthetic Biology, 2023, 4(4):756-778.
[9] GUO F, QIAO Y Y, XIN F X, et al.Bioconversion of C1 feedstocks for chemical production using Pichia pastoris[J].Trends in Biotechnology, 2023, 41(8):1066-1079.
[10] GASSLER T, SAUER M, GASSER B, et al.The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2[J].Nature Biotechnology, 2020, 38(2):210-216.
[11] BAR-EVEN A, NOOR E, FLAMHOLZ A, et al.Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes[J].Biochimica et Biophysica Acta, 2013, 1827(8-9):1039-1047.
[12] KIM S, LINDNER S N, ASLAN S, et al.Growth of E.coli on formate and methanol via the reductive glycine pathway[J].Nature Chemical Biology, 2020, 16(5):538-545.
[13] ZHANG X, NEWMAN E.Deficiency in L-serine deaminase results in abnormal growth and cell division of Escherichia coli K-12[J].Molecular Microbiology, 2008, 69(4):870-881.
[14] MUNDHADA H, SCHNEIDER K, CHRISTENSEN H B, et al.Engineering of high yield production of L-serine in Escherichia coli[J].Biotechnology and Bioengineering, 2016, 113(4):807-816.
[15] KLEWING A, KOO B M, KRÜGER L, et al.Resistance to serine in Bacillus subtilis:Identification of the serine transporter YbeC and of a metabolic network that links serine and threonine metabolism[J].Environmental Microbiology, 2020, 22(9):3937-3949.
[16] CAI P, DUAN X P, WU X Y, et al.Recombination machinery engineering facilitates metabolic engineering of the industrial yeast Pichia pastoris[J].Nucleic Acids Research, 2021, 49(13):7791-7805.
[17] BANG J, HWANG C H, AHN J H, et al.Escherichia coli is engineered to grow on CO2 and formic acid[J].Nature Microbiology, 2020, 5(12):1459-1463.
[18] TURLIN J, DRONSELLA B, DE MARIA A, et al.Integrated rational and evolutionary engineering of genome-reduced Pseudomonas putida strains promotes synthetic formate assimilation[J].Metabolic Engineering, 2022, 74:191-205.
[19] CLAASSENS N J, BORDANABA-FLORIT G, COTTON C A R, et al.Replacing the Calvin cycle with the reductive glycine pathway in Cupriavidus necator[J].Metabolic Engineering, 2020, 62:30-41.
[20] HAMA H, SUMITA Y, KAKUTANI Y, et al.Target of serine inhibition in Escherichia coli[J].Biochemical and Biophysical Research Communications, 1990, 168(3):1211-1216.
[21] TAZUYA-MURAYAMA K, ARAMAKI H, MISHIMA M, et al.Effect of L-serine on the biosynthesis of aromatic amino acids in Escherichia coli[J].Journal of Nutritional Science and Vitaminology, 2006, 52(4):256-260.
文章导航

/