氨基酸作为一种迟效碳源无法被微生物快速利用。L-丝氨酸脱水酶(L-serine dehydratase,L-SerDH)可以将L-丝氨酸一步催化为丙酮酸和氨进入中心碳代谢生成生物量,且此过程不需要消耗ATP和还原力。L-丝氨酸是甲酸利用途径(还原性甘氨酸途径)的关键中间体。因此,改善L-丝氨酸的利用可以为甲酸和丝氨酸作为碳源利用提供参考价值。该文对巴斯德毕赤酵母(Pichia pastoris)进行了丝氨酸耐受性实验,结果显示毕赤酵母可以耐受20 g/L丝氨酸。对内源L-丝氨酸脱水酶在毕赤酵母中的表达进行了优化。在甘氨酸营养型毕赤酵母内分别表达了8种异源L-丝氨酸脱水酶,结果表示大肠杆菌tdcG基因编码的L-SerDH对丝氨酸利用改善效果最好,终OD600提高至出发菌株的1.6倍。该研究验证了巴斯德毕赤酵母对L-丝氨酸的耐受性,并筛选得到了较优的L-丝氨酸脱水酶来源,为毕赤酵母的丝氨酸利用提供了更优的酶来源。
Amino acids cannot be rapidly utilized by microorganisms as a gradually metabolized carbon source.L-serine dehydratase (L-SerDH) catalyzes the one-step conversion of L-serine into pyruvate and ammonia, facilitating central carbon metabolism to generate biomass without the consumption of ATP and reducing power.L-serine is a key intermediate in the formate utilization pathway (reductive glycine pathway).Therefore, improving the utilization of L-serine can provide valuable insights into the utilization of formate and serine as carbon sources.This paper explored serine tolerance of Pichia pastoris.Results demonstrated that P.pastoris exhibited tolerance to 20 g/L of L-serine.Expression optimization of endogenous L-serine dehydratase was carried out in P.pastoris.Eight heterologous L-serine dehydratases were expressed separately in glycine auxotroph P.pastoris.The results indicated that L-SerDH encoded by the E.coli tdcG gene had the best effect on the improvement of serine utilization, with the final OD600 increased to 1.6-fold that of the original strain.This study represents the validation of L-serine tolerance in P.pastoris and screens a superior source of L-serine dehydratase.These findings offer valuable insights into enhancing enzyme sources for serine utilization in P.pastoris.
[1] XU G Q, ZHANG X M, XIAO W H, et al.Production of L-serine and its derivative L-cysteine from renewable feedstocks using Corynebacterium glutamicum:Advances and perspectives[J].Critical Reviews in Biotechnology, 2024, 44(3):448-461.
[2] DE LA CRUZ J G, MACHENS F, MESSERSCHMIDT K, et al.Core catalysis of the reductive Glycine pathway demonstrated in yeast[J].ACS Synthetic Biology, 2019, 8(5):911-917.
[3] RENNIG M, MUNDHADA H, WORDOFA G G, et al.Industrializing a bacterial strain for L-serine production through translation initiation optimization[J].ACS Synthetic Biology, 2019, 8(10):2347-2358.
[4] ZHU Q J, ZHANG X M, LUO Y C, et al.L-Serine overproduction with minimization of by-product synthesis by engineered Corynebacterium glutamicum[J].Applied Microbiology and Biotechnology, 2015, 99(4):1665-1673.
[5] 康培. 代谢工程改造大肠杆菌glyA敲除菌株提高L-丝氨酸产量[D].天津:天津大学, 2016.
KANG P.Increased L-serine production by metabolic engineering of glyA knockout E.coli[D].Tianjin:Tianjin University, 2016.
[6] ZHANG X M, XU G Q, SHI J S, et al.Microbial production of L-serine from renewable feedstocks[J].Trends in Biotechnology, 2018, 36(7):700-712.
[7] 王凯, 刘子鹤, 陈必强, 等.微生物利用二氧化碳合成燃料及化学品:第三代生物炼制[J].合成生物学, 2020, 1(1):60-70.
WANG K, LIU Z H, CHEN B Q, et al.Microbial utilization of carbon dioxide to synthesize fuels and chemicals:Third-generation biorefineries[J].Synthetic Biology, 2020, 1(1):60-70.
[8] 程真真, 张健, 高聪, 等.代谢工程改造微生物利用甲酸研究进展 [J].合成生物学, 2023, 4(4):756-778.
CHENG Z Z, ZHANG J, GAO C, et al.Progress in metabolic engineering of microorganisms for the utilization of formate[J].Synthetic Biology, 2023, 4(4):756-778.
[9] GUO F, QIAO Y Y, XIN F X, et al.Bioconversion of C1 feedstocks for chemical production using Pichia pastoris[J].Trends in Biotechnology, 2023, 41(8):1066-1079.
[10] GASSLER T, SAUER M, GASSER B, et al.The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2[J].Nature Biotechnology, 2020, 38(2):210-216.
[11] BAR-EVEN A, NOOR E, FLAMHOLZ A, et al.Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes[J].Biochimica et Biophysica Acta, 2013, 1827(8-9):1039-1047.
[12] KIM S, LINDNER S N, ASLAN S, et al.Growth of E.coli on formate and methanol via the reductive glycine pathway[J].Nature Chemical Biology, 2020, 16(5):538-545.
[13] ZHANG X, NEWMAN E.Deficiency in L-serine deaminase results in abnormal growth and cell division of Escherichia coli K-12[J].Molecular Microbiology, 2008, 69(4):870-881.
[14] MUNDHADA H, SCHNEIDER K, CHRISTENSEN H B, et al.Engineering of high yield production of L-serine in Escherichia coli[J].Biotechnology and Bioengineering, 2016, 113(4):807-816.
[15] KLEWING A, KOO B M, KRÜGER L, et al.Resistance to serine in Bacillus subtilis:Identification of the serine transporter YbeC and of a metabolic network that links serine and threonine metabolism[J].Environmental Microbiology, 2020, 22(9):3937-3949.
[16] CAI P, DUAN X P, WU X Y, et al.Recombination machinery engineering facilitates metabolic engineering of the industrial yeast Pichia pastoris[J].Nucleic Acids Research, 2021, 49(13):7791-7805.
[17] BANG J, HWANG C H, AHN J H, et al.Escherichia coli is engineered to grow on CO2 and formic acid[J].Nature Microbiology, 2020, 5(12):1459-1463.
[18] TURLIN J, DRONSELLA B, DE MARIA A, et al.Integrated rational and evolutionary engineering of genome-reduced Pseudomonas putida strains promotes synthetic formate assimilation[J].Metabolic Engineering, 2022, 74:191-205.
[19] CLAASSENS N J, BORDANABA-FLORIT G, COTTON C A R, et al.Replacing the Calvin cycle with the reductive glycine pathway in Cupriavidus necator[J].Metabolic Engineering, 2020, 62:30-41.
[20] HAMA H, SUMITA Y, KAKUTANI Y, et al.Target of serine inhibition in Escherichia coli[J].Biochemical and Biophysical Research Communications, 1990, 168(3):1211-1216.
[21] TAZUYA-MURAYAMA K, ARAMAKI H, MISHIMA M, et al.Effect of L-serine on the biosynthesis of aromatic amino acids in Escherichia coli[J].Journal of Nutritional Science and Vitaminology, 2006, 52(4):256-260.