研究报告

绵羊与山羊乳成分及泌乳期乳代谢组比较分析

  • 王春伟 ,
  • 徐全忠 ,
  • 王乐群 ,
  • 冯爽 ,
  • 冯睿 ,
  • 郑重 ,
  • 张立 ,
  • 张立果 ,
  • 苏小虎
展开
  • 1(内蒙古大学 生命科学学院省部共建草原家畜生殖调控与繁育国家重点实验室,内蒙古 呼和浩特,010020)
    2(内蒙古乌兰察布市农牧和科技局,乌兰察布市畜牧工作站,内蒙古 乌兰察布,012000)
第一作者:硕士研究生(苏小虎助理研究员为通信作者,E-mail:13947144670@139.com)

收稿日期: 2023-06-01

  修回日期: 2023-07-04

  网络出版日期: 2024-08-02

基金资助

国家自然科学基金项目(32160768);内蒙古自治区科技计划项目(2021GG0287)

Comparative analysis of milk composition and lactation milk metabolism groups in sheep and goats

  • WANG Chunwei ,
  • XU Quanzhong ,
  • WANG Lequn ,
  • FENG Shuang ,
  • FENG Rui ,
  • ZHENG Zhong ,
  • ZHANG Li ,
  • ZHANG Liguo ,
  • SU Xiaohu
Expand
  • 1(The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Inner Mongolia Autonomous Region, Hohhot 010020, China)
    2(Ulanqab Animal Husbandry Workstation, Ulanqab Agriculture and Animal Husbandry Bureau, Inner Mongolia Autonomous Region, Ulanqab 012000, China)

Received date: 2023-06-01

  Revised date: 2023-07-04

  Online published: 2024-08-02

摘要

该研究通过对泌乳中期绵羊与山羊乳成分及乳代谢组进行比较分析,为2个物种的泌乳性状差异机制解析提供帮助,并为奶羊的选育和饲养提供参考。在分娩后第90天分别采集6只绵羊乳与山羊乳样,通过乳成分分析仪对2个物种乳常规成分进行分析;并利用液相色谱结合质谱的非靶向代谢组学方法,对乳中的代谢物进行分析。结果显示,绵羊乳中乳脂、乳糖、蛋白质、酪蛋白、固形物和非乳脂固形物均显著高于山羊奶(P<0.05);乳代谢组分析发现,共检测到1 513种代谢物,对其中455种进行了注释,根据条件筛选鉴定出292种差异代谢物。对差异代谢物进行通路富集分析发现,共富集到53条功能通路,其中绵羊乳和山羊乳的优势代谢物分别富集到30和23条功能通路,绵羊乳优势代谢物富集最丰富的通路是支链脂肪酸的氧化,而山羊乳是五糖磷酸酯途径。研究结果为乳用家畜泌乳性状调控机制解析提供了一定帮助,为奶羊的饲养与泌乳性能的改良提供了一定参考。

本文引用格式

王春伟 , 徐全忠 , 王乐群 , 冯爽 , 冯睿 , 郑重 , 张立 , 张立果 , 苏小虎 . 绵羊与山羊乳成分及泌乳期乳代谢组比较分析[J]. 食品与发酵工业, 2024 , 50(13) : 140 -148 . DOI: 10.13995/j.cnki.11-1802/ts.036324

Abstract

A comparative analysis of milk composition and milk metabolome between sheep and goats in mid-lactation was conducted to help resolve the mechanisms of differences in lactation traits between the two species and to provide a reference for the selection and breeding of dairy sheep.Six sheep and goat milk samples were collected separately on the 90th day after parturition, and the milk routine composition was analyzed by milk composition analyzer for both species, and the metabolites in milk were analyzed by liquid chromatography coupled with mass spectrometry using a non-targeted metabolomics approach.Results showed that milk fat, lactose, protein, casein, solids, and non-milk fat solids were significantly higher in sheep milk than in goat milk (P<0.05).Milk metabolome analysis revealed that 1 513 metabolites were detected, of which 455 were annotated and 292 differential metabolites were identified based on conditional screening.Pathway enrichment analysis of the differential metabolites revealed that a total of 53 functional pathways were enriched, among which 30 and 23 functional pathways were enriched for the dominant metabolites in sheep and goat milk, respectively, and the most enriched pathway for the dominant metabolites in sheep milk was the oxidation of branched-chain fatty acids, whereas in goat milk it was the pentasaccharide phosphate pathway.The results of the study provide some help for the analysis of the regulatory mechanism of lactation traits in dairy livestock and provide some reference for the improvement of the feeding and lactation performance of dairy sheep.

参考文献

[1] SUN Y X, WANG C N, SUN X M, et al.Proteomic analysis of differentially expressed whey proteins in Guanzhong goat milk and Holstein cow milk by iTRAQ coupled with liquid chromatography-tandem mass spectrometry[J].Journal of Dairy Science, 2020, 103(10):8732-8740.
[2] FERRO M M, TEDESCHI L O, ATZORI A S.The comparison of the lactation and milk yield and composition of selected breeds of sheep and goats[J].Translational Animal Science, 2017, 1(4):498-506.
[3] PIETRZAK-FIEĆKO R, KAMELSKA-SADOWSKA A M.The comparison of nutritional value of human milk with other mammals' milk[J].Nutrients, 2020, 12(5):1404.
[4] 李景芳, 陆东林.我国乳用羊品种及其生产性能[J].新疆畜牧业, 2013(7):4-6.
LI J F, LU D L.Chinese dairy sheep breeds and their production performance[J].Xinjiang Journal of Animal Husbandry, 2013(7):4-6.
[5] 宋宇轩, 安小鹏, 张磊, 等.奶绵羊产业概况及中国奶绵羊产业的前景分析[J].中国乳业, 2019(8):16-21.
SONG Y X, AN X P, ZHANG L, et al.General situation of dairy sheep industry and prospect analysis of dairy sheep industry in China[J].China Dairy, 2019(8):16-21.
[6] GOLDANSAZ S A, GUO A C, SAJED T, et al.Livestock metabolomics and the livestock metabolome:A systematic review[J].PLoS One, 2017, 12(5):e0177675.
[7] ZHAO L L, ZHANG J X, GE W P, et al.Comparative lipidomics analysis of human and ruminant milk reveals variation in composition and structural characteristics[J].Journal of Agricultural and Food Chemistry, 2022, 70(29):8994-9006.
[8] SHI W, YUAN X, CUI K Q, et al.LC-MS/MS based metabolomics reveal candidate biomarkers and metabolic changes in different buffalo species[J].Animals:an Open Access Journal from MDPI, 2021, 11(2):560.
[9] WANG L N, LI X D, LIU L, et al.Comparative lipidomics analysis of human, bovine and caprine milk by UHPLC-Q-TOF-MS[J].Food Chemistry, 2020, 310:125865.
[10] BITTANTE G, AMALFITANO N, BERGAMASCHI M, et al.Composition and aptitude for cheese-making of milk from cows, buffaloes, goats, sheep, dromedary camels, and donkeys[J].Journal of Dairy Science, 2022, 105(3):2132-2152.
[11] MOATSOU G, SAKKAS L.Sheep milk components:Focus on nutritional advantages and biofunctional potential[J].Small Ruminant Research, 2019, 180:86-99.
[12] MOHANTY D P, MOHAPATRA S, MISRA S, et al.Milk derived bioactive peptides and their impact on human health: A review[J].Saudi Journal of Biological Sciences, 2016, 23(5):577-583.
[13] NGUYEN H T H, AFSAR S, DAY L.Differences in the microstructure and rheological properties of low-fat yoghurts from goat, sheep and cow milk[J].Food Research International, 2018, 108:423-429.
[14] CABONI P, MURGIA A, PORCU A, et al.A metabolomics comparison between sheep's and goat's milk[J].Food Research International, 2019, 119:869-875.
[15] ROCCHETTI G, GALLO A, NOCETTI M, et al.Milk metabolomics based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry to discriminate different cows feeding regimens[J].Food Research International, 2020, 134:109279.
[16] ZWIERZCHOWSKI G, ZHANG G S, MANDAL R, et al.Milk metabotyping identifies metabolite alterations in the whole raw milk of dairy cows with lameness[J].Journal of Agricultural and Food Chemistry, 2020, 68(15):4507-4514.
[17] YUAN X, SHI W, JIANG J P, et al.Comparative metabolomics analysis of milk components between Italian Mediterranean buffaloes and Chinese Holstein cows based on LC-MS/MS technology[J].PLoS One, 2022, 17(1):e0262878.
[18] WAHEDI H M, JEONG M, CHAE J K, et al.Aloesin from Aloe vera accelerates skin wound healing by modulating MAPK/Rho and Smad signaling pathways in vitro and in vivo[J].Phytomedicine, 2017, 28:19-26.
[19] SHENG S, XU J L, LIANG Q Y, et al.Astragaloside IV inhibits bleomycin-induced ferroptosis in human umbilical vein endothelial cells by mediating LPC[J].Oxidative Medicine and Cellular Longevity, 2021, 2021:6241242.
[20] 李真, 李庆章.奶山羊乳腺发育过程中生长激素、胰岛素及其受体的变化规律研究[J].中国农业科学, 2010, 43(8):1730-1737.
LI Z, LI Q Z.Development change of growth hormone, insulin and their receptors in mammary gland of dairy goats[J].Scientia Agricultura Sinica, 2010, 43(8):1730-1737.
[21] BOMFIM G F, MERIGHE G K F, DE OLIVEIRA S A, et al.Acute and chronic effects of cortisol on milk yield, the expression of key receptors, and apoptosis of mammary epithelial cells in Saanen goats[J].Journal of Dairy Science, 2022, 105(1):818-830.
[22] AMIN A B, ZHANG L, ZHANG J Y, et al.Metagenomic and metabolomic insights into the mechanism underlying the disparity in milk yield of Holstein cows[J].Frontiers in Microbiology, 2022, 13:844968.
[23] 刘雪琴, 王迪, 米思远, 等.叶酸补饲对隐性乳房炎奶牛免疫力及产奶性状相关基因表达的影响[J].畜牧兽医学报, 2020, 51(11):2731-2742.
LIU X Q, WANG D, MI S Y, et al.The effect of folic acid supplementation on the expression of genes related to immunity and milking traits in subclinical mastitis cows[J].Chinese Journal of Animal and Veterinary Sciences, 2020, 51(11):2731-2742.
[24] 袁博, 卢金河, 赵晓静, 等.β-胡萝卜素对奶牛生产性能及血液指标的影响[J].中国饲料, 2022(23):81-86.
YUAN B, LU J H, ZHAO X J, et al.Effects of β-carotene on production performance and blood parameter of dairy cows[J].China Feed, 2022(23):81-86.
[25] 马吉锋, 常国新, 王建东, 等.β-胡萝卜素对奶牛泌乳及繁殖性能影响的研究[J].黑龙江畜牧兽医, 2015(1):86-88.
MA J F, CHANG G X, WANG J D, et al.Effect of β-carotene on lactation and reproductive performance of dairy cows[J].Heilongjiang Animal Science and Veterinary Medicine, 2015(1):86-88.
[26] 孙胜祥. 不同β-胡萝卜素水平对奶牛产奶性能的影响[J].青海畜牧兽医杂志, 2010, 40(6):9-11.
SUN S X.Effect of different level of β-carotene on milking performance of dairy cow[J].Chinese Qinghai Journal of Animal and Veterinary Sciences, 2010, 40(6):9-11.
[27] 赵萌. 中国荷斯坦牛不同泌乳阶段乳腺基因差异表达研究[D].泰安:山东农业大学, 2017.
ZHAO M.The internal self-regulatory rules inside the mammary gland of chinese holstein cow during lactation cycle[D].Tai'an:Shandong Agricultural University, 2017.
[28] FLIS Z, MOLIK E.Importance of bioactive substances in sheep's milk in human health[J].International Journal of Molecular Sciences, 2021, 22(9):4364.
[29] SHOKOOHINIA Y, JAFARI F, MOHAMMADI Z, et al.Potential anticancer properties of osthol:A comprehensive mechanistic review[J].Nutrients, 2018, 10(1):36.
[30] YE B, YANG J L, CHEN L J, et al.Induction of apoptosis by phenylisocyanate derivative of quercetin:Involvement of heat shock protein[J].Anti-Cancer Drugs, 2007, 18(10):1165-1171.
[31] BOGNAR Z, CSEH A M, FEKETE K, et al.Amiodarone's major metabolite, desethylamiodarone inhibits proliferation of B16-F10 melanoma cells and limits lung metastasis formation in an in vivo experimental model[J].PLoS One, 2020, 15(9):e0239088.
[32] MA J G, MA Z H, LI W, et al.The mechanism of calcitriol in cancer prevention and treatment[J].Current Medicinal Chemistry, 2013, 20(33):4121-4130.
[33] JAIN R, ALI HUSSEIN M, PIERCE S, et al.Oncopreventive and oncotherapeutic potential of licorice triterpenoid compound glycyrrhizin and its derivatives:Molecular insights[J].Pharmacological Research, 2022, 178:106138.
[34] USHIJIMA H, MONZAKI R, ONODERA A.Suppressive effects of anisomycin on the proliferation of B16 mouse melanoma cells in vitro[J].Anticancer Research, 2021, 41(12):6113-6121.
[35] STARLING-SOARES B, CARRERA-BASTOS P, BETTENDORFF L.Role of the synthetic B1 vitamin sulbutiamine on health[J].Journal of Nutrition and Metabolism, 2020, 2020:9349063.
[36] CAO H Q, ZHANG Z W, ZHAO S, et al.Hydrophobic interaction mediating self-assembled nanoparticles of succinobucol suppress lung metastasis of breast cancer by inhibition of VCAM-1 expression[J].Journal of Controlled Release, 2015, 205:162-171.
[37] SIKANDER M, HAFEEZ B B, MALIK S, et al.Cucurbitacin D exhibits potent anti-cancer activity in cervical cancer[J].Scientific Reports, 2016, 6:36594.
[38] PHELPS R A, BROADBENT T J, STAFFORINI D M, et al.New perspectives on APC control of cell fate and proliferation in colorectal cancer[J].Cell Cycle, 2009, 8(16):2549-2556.
[39] LIU J Y, FU W Q, ZHENG X J, et al.Avasimibe exerts anticancer effects on human glioblastoma cells via inducing cell apoptosis and cell cycle arrest[J].Acta Pharmacologica Sinica, 2021, 42(1):97-107.
[40] CHEN R Z, YANG F, ZHANG M, et al.Cellular and molecular mechanisms of pristimerin in cancer therapy:Recent advances[J].Frontiers in Oncology, 2021, 11:671548.
[41] HAN Y H, MUN J G, JEON H D, et al.Betulin inhibits lung metastasis by inducing cell cycle arrest, autophagy, and apoptosis of metastatic colorectal cancer cells[J].Nutrients, 2019, 12(1):66.
[42] LI N, YANG F, LIU D Y, et al.Scoparone inhibits pancreatic cancer through PI3K/Akt signaling pathway[J].World Journal of Gastrointestinal Oncology, 2021, 13(9):1164-1183.
[43] IBRAHIM N K.Ixabepilone:Overview of effectiveness, safety, and tolerability in metastatic breast cancer[J].Frontiers in Oncology, 2021, 11:617874.
[44] SHIELS R G, HEWAGE W, PENNELL E N, et al.Biliverdin and bilirubin sulfonate inhibit monosodium urate induced sterile inflammation in the rat[J].European Journal of Pharmaceutical Sciences, 2020, 155:105546.
[45] JANGI S, OTTERBEIN L, ROBSON S.The molecular basis for the immunomodulatory activities of unconjugated bilirubin[J].The International Journal of Biochemistry & Cell Biology, 2013, 45(12):2843-2851.
[46] ESATBEYOGLU T, RIMBACH G.Canthaxanthin:From molecule to function[J].Molecular Nutrition & Food Research, 2017, 61(6):1600469.
[47] WU Y X, KIM Y J, KWON T H, et al.Anti-inflammatory effects of mulberry (Morus alba L.) root bark and its active compounds[J].Natural Product Research, 2020, 34(12):1786-1790.
[48] BALDISSEROTTO A, MALISARDI G, SCALAMBRA E, et al.Synthesis, antioxidant and antimicrobial activity of a new phloridzin derivative for dermo-cosmetic applications[J].Molecules, 2012, 17(11):13275-13289.
[49] LÓPEZ-SANROMÁN A, ESPLUGUES J V, DOMÈNECH E.Pharmacology and safety of tofacitinib in ulcerative colitis[J].Gastroenterología y Hepatología (English Edition), 2021, 44(1):39-48.
[50] WISEMAN E H, MCILHENNY H M, BETTIS J W.Flumizole, a new nonsteroidal anti-inflammatory agent[J].Journal of Pharmaceutical Sciences, 1975, 64(9):1469-1475.
[51] CHEN P, CHEN F C, LEI J X, et al.Gut microbial metabolite urolithin B attenuates intestinal immunity function in vivo in aging mice and in vitro in HT29 cells by regulating oxidative stress and inflammatory signalling[J].Food & Function, 2021, 12(23):11938-11955.
[52] SUWANNASOM N, KAO I, PRUß A, et al.Riboflavin:The health benefits of a forgotten natural vitamin[J].International Journal of Molecular Sciences, 2020, 21(3):950.
[53] ZAID A N, AL RAMAHI R.Depigmentation and anti-aging treatment by natural molecules[J].Current Pharmaceutical Design, 2019, 25(20):2292-2312.
[54] DAMBROVA M, MAKRECKA-KUKA M, KUKA J, et al.Acylcarnitines:Nomenclature, biomarkers, therapeutic potential, drug targets, and clinical trials[J].Pharmacological Reviews, 2022, 74(3):506-551.
[55] ESPOSITO G, LUPARINI M R.Pivagabine:A novel psychoactive drug[J].Arzneimittel-Forschung, 1997, 47(11A):1306-1309.
[56] MORETTI A, CACCIA C, MARTINI A, et al.Effect of caroxazone, a new antidepressant drug, on monoamine oxidases in healthy volunteers[J].British Journal of Clinical Pharmacology, 1981, 11(5):511-515.
文章导航

/