研究报告

基于热量平衡模型的大曲发酵升温机理研究

  • 赵玉杰 ,
  • 靳光远 ,
  • 唐群勇 ,
  • 吴建峰 ,
  • 徐岩
展开
  • 1(江南大学 生物工程学院,酿造微生物与应用酶学研究室,江苏 无锡,214122)
    2(江南大学,工业生物技术教育部重点实验室,江苏 无锡,214122)
    3(江苏今世缘酒业股份有限公司,江苏 涟水,223400)
第一作者:硕士研究生(徐岩教授和靳光远助理研究员为共同通信作者,E-mail:yxu@jiangnan.edu.cn;g.jin@jiangnan.edu.cn)

收稿日期: 2024-02-23

  修回日期: 2024-04-03

  网络出版日期: 2024-08-02

基金资助

国家自然科学基金项目(22108101);国家重点研发计划(2022YFD2101202);中国酒业协会白酒技术创新战略发展委员会课题(202112)

The mechanism of heat transfer during Daqu fermentation based on heat balance modeling

  • ZHAO Yujie ,
  • JIN Guangyuan ,
  • TANG Qunyong ,
  • WU Jianfeng ,
  • XU Yan
Expand
  • 1(Laboratory of Brewing Microbiology and Applied Enzymology, Jiangnan University, Wuxi 214122, China)
    2(Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China)
    3(Jiangsu King′s Luck Brewery Joint-Stock Co.Ltd, Lianshui 223400, China)

Received date: 2024-02-23

  Revised date: 2024-04-03

  Online published: 2024-08-02

摘要

中国白酒产业正面临产业转型升级,包括制曲在内的关键工艺采用基于经验式的直接改造,关键工程学机理的缺乏导致无法进行理性设计。该研究从大曲升温机理角度,对曲房固态发酵热量的产生与流动进行了定量分析,跟踪记录大曲发酵过程参数,简化大曲发酵过程生化反应,构建大曲热量平衡模型。通过模型计算,整个曲房发酵过程产生的热量,经水分蒸发途径散热占比54.22%,墙壁和微弱气体流动散热占比42.00%,由室内空气升温引起的热量变化可以忽略,剩余3.77%为累积热量部分,其与大曲升温呈正相关(R2=0.85)。经验证,大曲温度变化模型的平均误差为5.05%,R2=0.94。基于模型探讨了调控水分参数对大曲温度产生的影响,表明了水分控制对于调控大曲温度的重要性。初步探讨从数学建模的角度为未来大曲生产的调控与优化的可行性,研究结果可为智能曲房的构建提供理论支撑。

本文引用格式

赵玉杰 , 靳光远 , 唐群勇 , 吴建峰 , 徐岩 . 基于热量平衡模型的大曲发酵升温机理研究[J]. 食品与发酵工业, 2024 , 50(14) : 18 -25 . DOI: 10.13995/j.cnki.11-1802/ts.038941

Abstract

Chinese Baijiu industry is undergoing industrial modernization.However, the key processes including Daqu processing are directly modified based on empirical knowledge, and the lack of engineering mechanisms lead to the inability of rational design.Here, this study quantitatively analyzed the heat generation and flow during Daqu solid-state fermentation, tracked and recorded the parameters during Daqu processing, simplified the biochemical reactions of the fermentation process, and built a Daqu heat balance model.Through the model, the heat generated during the whole fermentation process was transferred outside of the system through three ways: Water evaporation (54.22%), conduction of wall and air flow (42.00%), and air temperature rising (<1%).The remaining heat (3.77%) was the cumulative heat, which was positively correlated with the temperature rise of the Daqu (R2=0.85).It was verified that the average error of the model for the temperature change of dacquoise was 5.05% with R2=0.94.Based on the model, the effect of regulating moisture parameters on the temperature of Daqu was explored, which showed the importance of moisture control for regulating the temperature during Daqu preparation.Through the preliminary exploration of the feasibility of regulating and optimizing the future production of Daqu from the perspective of mathematical modeling, the results of the study can provide theoretical support for the construction of modern fermentation process.

参考文献

[1] 杜如冰, 任聪, 吴群, 等.生态发酵技术原理与应用.食品与发酵工业, 2021.47(1):p.266-275.
DU R B, REN C, WU Q, et al.The ecological fermentation technology:Principle and its applications[J].Food and Fermentation Industries, 2021.47(1):p.266-275.
[2] JIN G Y, ZHU Y, XU Y.Mystery behind Chinese liquor fermentation[J].Trends in Food Science & Technology, 2017, 63:18-28.
[3] ZHENG X W, TABRIZI M R, ROBERT NOUT M J, et al.Daqu-A traditional Chinese liquor fermentation starter[J].Journal of the Institute of Brewing, 2011.117(1):82-90.
[4] 朱文优, 聂尧, 徐岩.不同季节大曲生产过程中真菌群落结构的演变[J].食品与机械, 2017, 33(10):16-22.
ZHU W Y, NIE Y, XU Y.Deep sequencing reveals fungal community evolution in the production of Daqu fermented different seasons[J].Food & Machinery, 2017, 33(10):16-22.
[5] LIANG F, BAN S B, HUANG H Q, et al.Predicting the effect of climatic factors on diversity of flavor compounds in Daqu fermentation[J].LWT, 2022, 169:113984.
[6] 程伟, 张杰, 潘天全, 等.一种浓香型白酒大曲培曲架及其翻曲装置的设计与应用[J].酿酒, 2020, 47(2):103-107.
CHENG W, ZHANG J, PAN T Q, et al.Design and application of a Daqu starter and its turning device for Luzhou-flavor liquor[J].Liquor Making, 2020, 47(2):103-107.
[7] 范文来. 高质量发展阶段白酒技术创新的几点思考[J].酿酒, 2021, 48(5):3-7.
FAN W L.Technological innovation of Baijiu in high quality development stage[J].Liquor Making, 2021, 48(5):3-7.
[8] 王柏文, 吴群, 徐岩, 等.中国白酒酒曲微生物组研究进展及趋势[J].微生物学通报, 2021, 48(5):1 737-1 746.
WANG B W, WU Q, XU Y, et al.Recent advances and perspectives in study of microbiome in Chinese Jiuqu starter[J].Microbiology China, 2021, 48(5):1737-1746.
[9] 李涛, 万自然, 刘宇, 等.浓香型大曲生产过程中微生物及温度变化规律的研究分析[J].酿酒科技, 2023(2):53-56.
LI T, WAN Z R, LIU Y, et al.Change law of microorganisms and temperature during the production of Nongxiang Daqu[J].Liquor-Making Science & Technology, 2023(2):53-56.
[10] 曹敬华, 李恬心, 刘雄锋, 等.不同工艺高温大曲的理化指标变化趋势研究[J].食品科技, 2023, 48(3):102-109.
CAO J H, LI T X, LIU X J, et al.The changing trend of physical and chemical indexes of high-temperature Daqu and different processes[J].Food Science and Technology, 2023, 48(3):102-109.
[11] 白云松. 大曲发酵过程的曲房热湿传递数值模拟分析[D].自贡:四川轻化工大学, 2020.
BAI Y S.Numerical simulation analysis of heat and moisture transfer in the fermentation room of Daqu fermentation process[D].Zigong:Sichuan University of Science & Engineering, 2020.
[12] 王平. 撬装式智能曲房设计及其内部环境参数控制研究[D].自贡:四川轻化工大学, 2021.
WANG P.Design of skid-mounted intelligent fermentation room of Daqu and the control of its internal environment parameters[D].Zigong:Sichuan University of Science & Engineering, 2021.
[13] JIN G Y, UHL P, ZHU Y, et al.Modeling of industrial-scale anaerobic solid-state fermentation for Chinese liquor production[J].Chemical Engineering Journal, 2020, 394:124942.
[14] FINKLER A T J, DE LIMA LUZ L F, KRIEGER N, et al.A model-based strategy for scaling-up traditional packed-bed bioreactors for solid-state fermentation based on measurement of O2 uptake rates[J].Biochemical Engineering Journal, 2021, 166:107854.
[15] 韩冰, 王莉, 李十中, 等.先进固体发酵技术(ASSF)生产甜高粱乙醇[J].生物工程学报, 2010, 26(7):966-973.
HAN B, WANG L, LI S Z, et al.Ethanol production from sweet sorghum stalks by advanced solid state fermentation (ASSF) technology[J].Chinese Journal of Biotechnology, 2010, 26(7):966-973.
[16] ZHAO Z M, WANG L, CHEN H Z.Variable pressure pulsation frequency optimization in gas double-dynamic solid-state fermentation (GDSSF) based on heat balance model[J].Process Biochemistry, 2015, 50(2):157-164.
[17] 刘彬, 童明伟, 陈胜立, 等.柑橘皮渣发酵中的内热源和导热特性[J].化学工程, 2008, 36(6):15-18.
LIU B, TONG M W, CHEN S L, et al.Inner heat source and thermal conduction in fermentation of citrus peel and pomace[J].Chemical Engineering, 2008, 36(6):15-18.
[18] 吴盛露, 杜海, 徐岩.生物热对传统固态发酵菌群演替及其代谢影响的研究进展[J].微生物学通报, 2022, 49(6):2281-2294.
WU S L, DU H, XU Y.Effect of bio-heat on microbial succession and metabolism in traditional solid-state fermentation:A review[J].Microbiology China, 2022, 49(6):2281-2294.
[19] 顾娟. 荞麦淀粉理化特性及消化性研究[D].无锡:江南大学, 2010.
GU J.Physicochemical properties and digestibility of buckwheat starch[D].Wuxi:Jiangnan University, 2010.
[20] MAJZOOBI M, BEPARVA P.Effects of acetic acid and lactic acid on physicochemical characteristics of native and cross-linked wheat starches[J].Food Chemistry, 2014, 147:312-317.
[21] NAGEL F J, TRAMPER J, BAKKER M S N, et al.Model for on-line moisture-content control during solid-state fermentation[J].Biotechnology and Bioengineering, 2001, 72(2):231-243.
[22] 刘彬. 有机物综合利用中的传热传质分析与应用[D].重庆:重庆大学, 2008.
LIU B.Research and application on thermal and mass transfer in the integrated using of biologic substrate[D].Chongqing:Chongqing University, 2008.
[23] LIVESEY G, BUSS D, COUSSEMENT P, et al.Suitability of traditional energy values for novel foods and food ingredients[J].Food Control, 2000, 11(4):249-289.
[24] WANG Y J, HUANG G Q, ZHANG A Q, et al.Estimating thermal balance during composting of swine manure and wheat straw:A simulation method[J].International Journal of Heat and Mass Transfer, 2014, 75:362-367.
[25] 王兴华, 丁昀, 杨庆, 等.空气湿度对平板空气集热器效率的影响[J].可再生能源, 2013, 31(1):5-8.
WANG X H,DING Y, YANG Q, et al.Influence of air humidity on the efficiency of flat air collector[J].Renewable Energy Resources, 2013, 31(1):5-8.
[26] FIGUEROA-MONTERO A, ESPARZA-ISUNZA T, SAUCEDO-CASTAÑEDA G, et al.Improvement of heat removal in solid-state fermentation tray bioreactors by forced air convection.Journal of Chemical Technology and Biotechnology[J].2011, 86(10):1321-1331.
[27] CAO Y, LI G, ZHANG Z B, et al.The specific heat of wheat[C].Proceedings of the 10th International Working Conference on Stored Product Protection.Julius-Kühn-Archiv, 2010, 243-249.
[28] MA S Y, LUO H B, ZHAO D, et al.Environmental factors and interactions among microorganisms drive microbial community succession during fermentation of Nongxiangxing Daqu[J].Bioresource Technology, 2022, 345:126549.
[29] BOTELLA C, HERNANDEZ J E, WEBB C.Dry weight model, capacitance and metabolic data as indicators of fungal biomass growth in solid state fermentation[J].Food and Bioproducts Processing, 2019, 114:144-153.
[30] 张曼, 谢军, 卫春会, 等.浓香型单层大曲与双层大曲的质量对比分析[J].食品与发酵工业, 2018, 44(12):221-228.
ZHANG M, XIE J, WEI C H, et al.Comparative quality analysis of Luzhou single-layer and double-layer Daqu[J].Food and Fermentation Industries, 2018.44(12):221-228.
[31] 杨阳, 禄凌飞, 刘光钱, 等.不同发酵顶温大曲中细菌群落结构的差异性分析[J].食品与发酵工业, 2023, 49(13):70-77.
YANG Y, LU L F, LIU G Q, et al.Difference analysis of bacterial community structure in Daqu with different peak temperatures achieved during fermentation[J].Food and Fermentation Industries, 2023, 49(13):70-77.
[32] XIAO C, LU Z M, ZHANG X J, et al.Bio-heat is a key environmental driver shaping the microbial community of medium-temperature Daqu[J].Applied and Environmental Microbiology, 2017, 83(23):e01550-e01517.
[33] 周书宇, 田建平, 高剑, 等.大曲发酵过程的环境温湿度均匀性调控系统研究[J].食品与发酵工业, 2023, 49(18):148-156.
ZHOU S Y, TIAN J P, GAO J, et al.Study on regulating system of ambient temperature and humidity uniformity in Daqu fermentation process[J].Food and Fermentation Industries, 2023, 49(18):148-156.
文章导航

/