综述与专题评论

姜黄素增溶技术研究进展

  • 郭玉 ,
  • 任迪峰 ,
  • 郭子烟 ,
  • 刘相君 ,
  • 翟星辰
展开
  • (北京林业大学 生物科学与技术学院,林木资源高效生产全国重点实验室,林业食品加工与安全北京市重点实验室,北京,100083)
第一作者:硕士研究生(翟星辰讲师为通信作者,E-mail:xingchenzhai@bjfu.edu.cn)

收稿日期: 2023-08-04

  修回日期: 2023-09-20

  网络出版日期: 2024-08-02

基金资助

国家自然科学基金青年科学基金项目(32201052);中国博士后科学基金面上资助(2021M690420);国家级大学生创新创业训练计划(202210022020)

Research progress on technology to improve solubility of curcumin

  • GUO Yu ,
  • REN Difeng ,
  • GUO Ziyan ,
  • LIU Xiangjun ,
  • ZHAI Xingchen
Expand
  • (State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Food Processing and Safety in Forestry, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China)

Received date: 2023-08-04

  Revised date: 2023-09-20

  Online published: 2024-08-02

摘要

天然多酚类化合物姜黄素具有广泛的生物和药理活性,在食品工业中常作为食用色素,用于面制品、肉制品及功能饮料的生产加工,在增加食品色香味的同时,还能发挥功效,促进机体健康;在医学领域具备抗癌、抗血栓、抗心衰、抑制炎症反应及降血压等潜能,具有很高的药理应用价值。但姜黄素因难溶于水,稳定性差,易降解,使其在体内难以被吸收,生物利用率低,这极大地阻碍了姜黄素在食品和药品等领域的应用。该文通过查阅大量国内外相关文献,对近年来姜黄素增溶技术的研究进展进行综述,概括出可通过包合、微乳、固体分散、吸附及胶束五大类技术来改善姜黄素的水溶性,提高生物利用度,为姜黄素在食品科学、生物医药及化妆品等领域的进一步开发利用提供参考和借鉴。

本文引用格式

郭玉 , 任迪峰 , 郭子烟 , 刘相君 , 翟星辰 . 姜黄素增溶技术研究进展[J]. 食品与发酵工业, 2024 , 50(14) : 342 -348 . DOI: 10.13995/j.cnki.11-1802/ts.036980

Abstract

Curcumin, a natural polyphenolic compound, has a wide range of biological and pharmacological activities.It is often used as a food coloring in the food industry for the production and processing of pasta products, meat products, and functional beverages, increasing the color and flavor of the foods and playing an effective role in health promotion.In the medical field, curcumin has promising potential for anti-cancer, anti-thrombosis, anti-heart failure, inhibition of inflammation, and lowering blood pressure, with high pharmacological application values.However, curcumin is difficult to absorb and has low bioavailability due to its insolubility in water, poor stability, and easy degradation, which greatly hinders the application of curcumin in the fields of food and medicine.By referring to a large number of domestic and foreign relevant literature, this paper reviewed the research progress of curcumin solubilization technology in recent years and summarized that five technologies including inclusion, microemulsion, solid dispersion, adsorption, and micelle, can improve the water solubility and bioavailability of curcumin.This review provides a reference for further development and utilization of curcumin in the fields of food science, biomedicine and cosmetics.

参考文献

[1] 罗钰湲, 张欢, 陈媛, 等. 柠檬籽纤维素纳米晶/纳米纤丝协同稳定Pickering乳液包埋姜黄素研究[J]. 食品与发酵工业, 2022, 48(15):162-168.
LUO Y Y, ZHANG H, CHEN Y, et al. Research on embedding curcumin by lemon seed cellulose nanocrystals/nanofibrils co-stabilized Pickering emulsion[J]. Food and Fermentation Industries, 2022, 48(15):162-168.
[2] 陈帅, 高彦祥. 基于β-环糊精的姜黄素传递载体的研究进展[J]. 中国调味品, 2019, 44(1):154-158.
CHEN S, GAO Y X. Research progress on delivery carrier of curcumin based on β-cyclodextrins[J]. China Condiment, 2019, 44(1):154-158.
[3] 黄浩河, 黄崇杏, 张霖雲, 等. 姜黄素在食品保鲜中应用的研究进展[J]. 食品工业科技, 2020, 41(7):320-324;331.
HUANG H H, HUANG C X, ZHANG L Y, et al. Research progress of curcumin in food preservation application[J]. Science and Technology of Food Industry, 2020, 41(7):320-324;331.
[4] LAN X, LIU Y Y, WANG L, et al. A review of curcumin in food preservation: Delivery system and photosensitization[J]. Food Chemistry, 2023, 424:136464.
[5] HUA C Y, KAI K, BI W L, et al. Curcumin induces oxidative stress in Botrytis cinerea, resulting in a reduction in gray mold decay in kiwifruit[J]. Journal of Agricultural and Food Chemistry, 2019, 67(28):7968-7976.
[6] WANG L, MU R J, LI Y Z, et al. Characterization and antibacterial activity evaluation of curcumin loaded konjac glucomannan and zein nanofibril films[J]. LWT, 2019, 113:108293.
[7] LAN X, LIU Y Y, WANG L, et al. A review of curcumin in food preservation: Delivery system and photosensitization[J]. Food Chemistry, 2023, 424:136464.
[8] TANG C H. Nano complexation of proteins with curcumin: From interaction to nanoencapsulation (A review)[J]. Food Hydrocolloids, 2020, 109:106106.
[9] 王华瑜, 沈朝璐, 袁玥, 等. 负载姜黄素的玉米多孔淀粉微球的优化制备、理化性质及释放研究[J]. 食品与发酵工业, 2023, 49(3):182-188.
WANG H Y, SHEN C L, YUAN Y, et al. Optimized preparation, physicochemical properties, and in vitro release research of curcumin loaded corn porous starch microspheres[J]. Food and Fermentation Industries, 2023, 49(3):182-188.
[10] AI C, ZHAO C G, XIANG C H, et al. Gum Arabic as a sole wall material for constructing nanoparticle to enhance the stability and bioavailability of curcumin[J]. Food Chemistry: X, 2023, 18:100724.
[11] ZAREI A, KHAZDOOZ L, KHOJASTEGI A, et al. Oil soluble iron: Curcumin derivatives and their complex[J]. Food Chemistry, 2024, 431:137085.
[12] WANG H L, HAO L L, WANG P, et al. Release kinetics and antibacterial activity of curcumin loaded zein fibers[J]. Food Hydrocolloids, 2017, 63:437-446.
[13] ZENG Z, DENG S Q, LIU Y, et al. Targeting transportation of curcumin by soybean lipophilic protein nano emulsion: Improving its bioaccessibility and regulating intestinal microorganisms in mice[J]. Food Hydrocolloids, 2023, 142:108781.
[14] ARYA P, RAGHAV N. In-vitro studies of curcumin-β-cyclodextrin inclusion complex as sustained release system[J]. Journal of Molecular Structure, 2021, 1228:129774.
[15] 李艺, 梅虎, 赵春景, 等. 姜黄素环糊精分子包合物的构建和优化[J]. 食品与生物技术学报, 2017, 36(11):1197-1202.
LI Y, MEI H, ZHAO C J, et al. Preparation and process optimization of curcumin-cyclodextrin inclusion complexes[J]. Journal of Food Science and Biotechnology, 2017, 36(11):1197-1202.
[16] 李宁. 姜黄素-羟丙基-β-环糊精包合物的制备及药代动力学研究[D]. 合肥: 安徽医科大学, 2018.
LI N. Preparation of curcumin-hydroxypropyl-β-cyclodextrin inclusion complex and investigation on its oral bioavailability[D]. Hefei: Anhui Medical University, 2018.
[17] CELEBIOGLU A, UYAR T. Fast-dissolving antioxidant curcumin/cyclodextrin inclusion complex electrospun nanofibrous webs[J]. Food Chemistry, 2020, 317:126397.
[18] 李霄. 姜黄素/二甲基-β-环糊精包合物的制备、表征及其性质[D]. 重庆: 重庆师范大学, 2019.
LI X. Preparation, characterization and properties of curcumin/DM-β-CD inclusion complex[D]. Chongqing: Chongqing Normal University, 2019.
[19] WU C C, ZHANG H T, GAO Z X, et al. Enhanced solubility of curcumin by complexation with fermented cyclic β-1, 2-glucans[J]. Journal of Pharmaceutical and Biomedical Analysis, 2022, 211:114613.
[20] 张梦柯. 环糊精包合及大分子修饰对其包埋释放行为的影响研究[D]. 无锡: 江南大学, 2019.
ZHANG M K. Effects of cyclodextrin complexation and macromolecular modification on its encapsulation and release behavior[D]. Wuxi: Jiangnan University, 2019.
[21] 肖萍. 超分子主体分子/姜黄素类化合物包合作用及其抗肿瘤活性的研究[D]. 扬州: 扬州大学, 2021.
XIAO P. Study on the inclusion of supramolecular host molecules and curcuminoid and their anti-tumor activity[D]. Yangzhou: Yangzhou University, 2021.
[22] 王凯, 雷声, 蒋举兴, 等. 辛烯基琥珀酸短链葡聚糖包埋橙花叔醇的研究[J]. 食品研究与开发, 2019, 40(24):144-152.
WANG K, LEI S, JIANG J X, et al. Studies on the embedding of orange blossom tertiary alcohols with octenyl succinic acid short-chain dextran[J]. Food Research and Development, 2019, 40(24):144-152.
[23] 冯涛, 曾小兰, 张钰, 等. 短链葡聚糖包合姜黄素的分子机制[J]. 现代食品科技, 2018, 34(10):111-116;140.
FENG T, ZENG X L, ZHANG Y, et al. Molecular mechanism underlying inclusion complexation of curcumin with short-chain glucan[J]. Modern Food Science and Technology, 2018, 34(10):111-116;140.
[24] DHINGRA D, BISHT M, BHAWNA B, et al. Enhanced solubility and improved stability of curcumin in novel water-in-deep eutectic solvent microemulsions[J]. Journal of Molecular Liquids, 2021, 339:117037.
[25] 孔维恺忻, 鄢尤奇, 蔡文康, 等. 十二烷基硫酸钠和吐温20复配体系对姜黄素的增溶和保护作用[J]. 北京大学学报(医学版), 2021, 53(1):227-231.
KONG W, YAN Y Q, CAI W K, et al. Solubilization and protection of curcumin by sodium dodecyl sulfate and tween 20 complex system[J]. Journal of Peking University (Health Sciences), 2021, 53(1):227-231.
[26] ARANGO-RUIZ Á, MARTIN Á, COSERO M J, et al. Encapsulation of curcumin using supercritical antisolvent (SAS) technology to improve its stability and solubility in water[J]. Food Chemistry, 2018, 258:156-163.
[27] ADITYA N P, YANG H, KIM S, et al. Fabrication of amorphous curcumin nanosuspensions using β-lactoglobulin to enhance solubility, stability, and bioavailability[J]. Colloids and Surfaces B: Biointerfaces, 2015, 127:114-121.
[28] FU D W, TIAN Y, WANG Z H, et al. Development of an Antarctic krill oil based self-microemulsion drug delivery system and its enhancement of bioaccessibility for curcumin[J]. Food Bioscience, 2023, 53:102762.
[29] LIU W J, PAN N, HAN Y, et al. Solubilization, stability and antioxidant activity of curcumin in a novel surfactant-free microemulsion system[J]. LWT, 2021, 147:111583.
[30] ZAINUDDIN N, AHMAD I, ZULFAKAR M H, et al. Cetyltrimethylammonium bromide-nanocrystalline cellulose (CTAB-NCC) based microemulsions for enhancement of topical delivery of curcumin[J]. Carbohydrate Polymers, 2021, 254:117401.
[31] 包海蓉, 陈百科. 固体分散体的制备及其在保健食品中的应用[J]. 食品工业科技, 2021, 42(16):397-403.
BAO H R, CHEN B K. Preparation of solid dispersion and its application in functional food[J]. Science and Technology of Food Industry, 2021, 42(16):397-403.
[32] XI Z Y, FEI Y L, WANG Y X, et al. Solubility improvement of curcumin by crystallization inhibition from polymeric surfactants in amorphous solid dispersions[J]. Journal of Drug Delivery Science and Technology, 2023, 83:104351.[LinkOut]
[33] FAN N, MA P P, WANG X, et al. Storage stability and solubilization ability of HPMC in curcumin amorphous solid dispersions formulated by Eudragit E100[J]. Carbohydrate Polymers, 2018, 199:492-498.
[34] 任莉莉, 陈静, 李先君, 等. 姜黄素固体分散体高效制备工艺优选[J]. 食品与药品, 2022, 24(4):300-303.
REN L L, CHEN J, LI X J, et al. Optimization of efficient preparation technology of curcumin solid dispersion[J]. Food and Drug, 2022, 24(4):300-303.
[35] 韩加伟. 基于绿色工艺的姜黄素固体分散体制备与体内外评价[D]. 南京: 南京中医药大学, 2019.
HAN J W. Preparation of curcumin solid dispersion based on green technology and its evaluation in vivo and in vitro[D]. Nanjing: Nanjing University of Chinese Medicine, 2019.
[36] 常道潇. 姜黄素-甘草酸固体分散体的制备与评价[D]. 银川: 宁夏医科大学, 2018.
CHANG D X. Preparation and evaluation of curcumin-glycyrrhizin solid dispersion[D]. Yinchuan: Ningxia Medical University, 2018.
[37] PAN-ON S, TIYABOONCHAI W. Development, characterization and Caco-2 cells absorption of curcumin solid dispersion for oral administration[J]. Journal of Drug Delivery Science and Technology, 2023, 86:104574.
[38] LANG W, TAGAMI T, KANG H J, et al. Partial depolymerization of tamarind seed xyloglucan and its functionality toward enhancing the solubility of curcumin[J]. Carbohydrate Polymers, 2023, 307:120629.
[39] ANSARIFAR E, SHAHIDI F, MOHEBBI M, et al. Optimization of limonene microencapsulation based on native and fibril soy protein isolate by VIKOR method[J]. LWT, 2019, 115:107884.
[40] JI F Y, XU J J, LIU H H, et al. Improved water solubility, antioxidant, and sustained-release properties of curcumin through the complexation with soy protein fibrils[J]. LWT, 2023, 180:114723.
[41] MOHAMMADIAN M, SALAMI M, MOMEN S, et al. Enhancing the aqueous solubility of curcumin at acidic condition through the complexation with whey protein nanofibrils[J]. Food Hydrocolloids, 2019, 87:902-914.
[42] HU Y, HE C X, JIANG C J, et al. Complexation with whey protein fibrils and chitosan: A potential vehicle for curcumin with improved aqueous dispersion stability and enhanced antioxidant activity[J]. Food Hydrocolloids, 2020, 104:105729.
[43] 吕晨艳,江政辉,赵广华.一种提高姜黄素水溶性和小肠消化稳定性的方法:中国, CN113907353A[P].2022-01-11.
LYU C Y, JIANG Z H, ZHAO G H. A method for improving the water solubility and digestive stability of curcumin in small intestine: China, CN113907353A[P].2022-01-11.
[44] LI L, YAO P. High dispersity, stability and bioaccessibility of curcumin by assembling with deamidated zein peptide[J]. Food Chemistry, 2020, 319:126577.
[45] LANGRIDGE T D, GEMEINHART R A. Toward understanding polymer micelle stability: Density ultracentrifugation offers insight into polymer micelle stability in human fluids[J]. Journal of Controlled Release, 2020, 319:157-167.
[46] 赵晨阳. 氨基酸对辛烯基琥珀酸燕麦β-葡聚糖酯自聚集行为的影响及其机制研究[D]. 重庆: 西南大学, 2020.
ZHAO C Y. The effects of amino acids on the self-aggregation behavior of octenylsuccinated oat β-glucan micelles and its mechanisms[D]. Chongqing: Southwest University, 2020.
[47] ZHANG Q H, WANG H, FENG Z M, et al. Preparation of pectin-tannic acid coated core-shell nanoparticle for enhanced bioavailability and antihyperlipidemic activity of curcumin[J]. Food Hydrocolloids, 2021, 119:106858.
[48] 高丽, 刘嘉, 董楠, 等. OSG胶束增溶姜黄素在果汁中的热及贮藏稳定性[J]. 食品与发酵工业, 2016, 42(8):71-74.
GAO L, LIU J, DONG N, et al. Thermal and storage stability of solubilized curcumin in OSG micelles using in juices[J]. Food and Fermentation Industries, 2016, 42(8):71-74.
[49] YE F Y, LEI D D, WANG S M, et al. Polymeric micelles of octenylsuccinated corn dextrin as vehicles to solubilize curcumin[J]. LWT, 2017, 75:187-194.
[50] WANG Y Y, JIANG W, JIANG Y C, et al. Self-assembled nano-micelles of lactoferrin peptides: Structure, physicochemical properties, and application for encapsulating and delivering curcumin[J]. Food Chemistry, 2022, 387:132790.
[51] ZHI K K, WANG R X, WEI J Q, et al. Self-assembled micelles of dual-modified starch via hydroxypropylation and subsequent debranching with improved solubility and stability of curcumin[J]. Food Hydrocolloids, 2021, 118:106809.
[52] LIU Q, LI F, JI N, et al. Acetylated debranched starch micelles as a promising nanocarrier for curcumin[J]. Food Hydrocolloids, 2021, 111:106253.
文章导航

/