[1] 罗钰湲, 张欢, 陈媛, 等. 柠檬籽纤维素纳米晶/纳米纤丝协同稳定Pickering乳液包埋姜黄素研究[J]. 食品与发酵工业, 2022, 48(15):162-168.
LUO Y Y, ZHANG H, CHEN Y, et al. Research on embedding curcumin by lemon seed cellulose nanocrystals/nanofibrils co-stabilized Pickering emulsion[J]. Food and Fermentation Industries, 2022, 48(15):162-168.
[2] 陈帅, 高彦祥. 基于β-环糊精的姜黄素传递载体的研究进展[J]. 中国调味品, 2019, 44(1):154-158.
CHEN S, GAO Y X. Research progress on delivery carrier of curcumin based on β-cyclodextrins[J]. China Condiment, 2019, 44(1):154-158.
[3] 黄浩河, 黄崇杏, 张霖雲, 等. 姜黄素在食品保鲜中应用的研究进展[J]. 食品工业科技, 2020, 41(7):320-324;331.
HUANG H H, HUANG C X, ZHANG L Y, et al. Research progress of curcumin in food preservation application[J]. Science and Technology of Food Industry, 2020, 41(7):320-324;331.
[4] LAN X, LIU Y Y, WANG L, et al. A review of curcumin in food preservation: Delivery system and photosensitization[J]. Food Chemistry, 2023, 424:136464.
[5] HUA C Y, KAI K, BI W L, et al. Curcumin induces oxidative stress in Botrytis cinerea, resulting in a reduction in gray mold decay in kiwifruit[J]. Journal of Agricultural and Food Chemistry, 2019, 67(28):7968-7976.
[6] WANG L, MU R J, LI Y Z, et al. Characterization and antibacterial activity evaluation of curcumin loaded konjac glucomannan and zein nanofibril films[J]. LWT, 2019, 113:108293.
[7] LAN X, LIU Y Y, WANG L, et al. A review of curcumin in food preservation: Delivery system and photosensitization[J]. Food Chemistry, 2023, 424:136464.
[8] TANG C H. Nano complexation of proteins with curcumin: From interaction to nanoencapsulation (A review)[J]. Food Hydrocolloids, 2020, 109:106106.
[9] 王华瑜, 沈朝璐, 袁玥, 等. 负载姜黄素的玉米多孔淀粉微球的优化制备、理化性质及释放研究[J]. 食品与发酵工业, 2023, 49(3):182-188.
WANG H Y, SHEN C L, YUAN Y, et al. Optimized preparation, physicochemical properties, and in vitro release research of curcumin loaded corn porous starch microspheres[J]. Food and Fermentation Industries, 2023, 49(3):182-188.
[10] AI C, ZHAO C G, XIANG C H, et al. Gum Arabic as a sole wall material for constructing nanoparticle to enhance the stability and bioavailability of curcumin[J]. Food Chemistry: X, 2023, 18:100724.
[11] ZAREI A, KHAZDOOZ L, KHOJASTEGI A, et al. Oil soluble iron: Curcumin derivatives and their complex[J]. Food Chemistry, 2024, 431:137085.
[12] WANG H L, HAO L L, WANG P, et al. Release kinetics and antibacterial activity of curcumin loaded zein fibers[J]. Food Hydrocolloids, 2017, 63:437-446.
[13] ZENG Z, DENG S Q, LIU Y, et al. Targeting transportation of curcumin by soybean lipophilic protein nano emulsion: Improving its bioaccessibility and regulating intestinal microorganisms in mice[J]. Food Hydrocolloids, 2023, 142:108781.
[14] ARYA P, RAGHAV N. In-vitro studies of curcumin-β-cyclodextrin inclusion complex as sustained release system[J]. Journal of Molecular Structure, 2021, 1228:129774.
[15] 李艺, 梅虎, 赵春景, 等. 姜黄素环糊精分子包合物的构建和优化[J]. 食品与生物技术学报, 2017, 36(11):1197-1202.
LI Y, MEI H, ZHAO C J, et al. Preparation and process optimization of curcumin-cyclodextrin inclusion complexes[J]. Journal of Food Science and Biotechnology, 2017, 36(11):1197-1202.
[16] 李宁. 姜黄素-羟丙基-β-环糊精包合物的制备及药代动力学研究[D]. 合肥: 安徽医科大学, 2018.
LI N. Preparation of curcumin-hydroxypropyl-β-cyclodextrin inclusion complex and investigation on its oral bioavailability[D]. Hefei: Anhui Medical University, 2018.
[17] CELEBIOGLU A, UYAR T. Fast-dissolving antioxidant curcumin/cyclodextrin inclusion complex electrospun nanofibrous webs[J]. Food Chemistry, 2020, 317:126397.
[18] 李霄. 姜黄素/二甲基-β-环糊精包合物的制备、表征及其性质[D]. 重庆: 重庆师范大学, 2019.
LI X. Preparation, characterization and properties of curcumin/DM-β-CD inclusion complex[D]. Chongqing: Chongqing Normal University, 2019.
[19] WU C C, ZHANG H T, GAO Z X, et al. Enhanced solubility of curcumin by complexation with fermented cyclic β-1, 2-glucans[J]. Journal of Pharmaceutical and Biomedical Analysis, 2022, 211:114613.
[20] 张梦柯. 环糊精包合及大分子修饰对其包埋释放行为的影响研究[D]. 无锡: 江南大学, 2019.
ZHANG M K. Effects of cyclodextrin complexation and macromolecular modification on its encapsulation and release behavior[D]. Wuxi: Jiangnan University, 2019.
[21] 肖萍. 超分子主体分子/姜黄素类化合物包合作用及其抗肿瘤活性的研究[D]. 扬州: 扬州大学, 2021.
XIAO P. Study on the inclusion of supramolecular host molecules and curcuminoid and their anti-tumor activity[D]. Yangzhou: Yangzhou University, 2021.
[22] 王凯, 雷声, 蒋举兴, 等. 辛烯基琥珀酸短链葡聚糖包埋橙花叔醇的研究[J]. 食品研究与开发, 2019, 40(24):144-152.
WANG K, LEI S, JIANG J X, et al. Studies on the embedding of orange blossom tertiary alcohols with octenyl succinic acid short-chain dextran[J]. Food Research and Development, 2019, 40(24):144-152.
[23] 冯涛, 曾小兰, 张钰, 等. 短链葡聚糖包合姜黄素的分子机制[J]. 现代食品科技, 2018, 34(10):111-116;140.
FENG T, ZENG X L, ZHANG Y, et al. Molecular mechanism underlying inclusion complexation of curcumin with short-chain glucan[J]. Modern Food Science and Technology, 2018, 34(10):111-116;140.
[24] DHINGRA D, BISHT M, BHAWNA B, et al. Enhanced solubility and improved stability of curcumin in novel water-in-deep eutectic solvent microemulsions[J]. Journal of Molecular Liquids, 2021, 339:117037.
[25] 孔维恺忻, 鄢尤奇, 蔡文康, 等. 十二烷基硫酸钠和吐温20复配体系对姜黄素的增溶和保护作用[J]. 北京大学学报(医学版), 2021, 53(1):227-231.
KONG W, YAN Y Q, CAI W K, et al. Solubilization and protection of curcumin by sodium dodecyl sulfate and tween 20 complex system[J]. Journal of Peking University (Health Sciences), 2021, 53(1):227-231.
[26] ARANGO-RUIZ Á, MARTIN Á, COSERO M J, et al. Encapsulation of curcumin using supercritical antisolvent (SAS) technology to improve its stability and solubility in water[J]. Food Chemistry, 2018, 258:156-163.
[27] ADITYA N P, YANG H, KIM S, et al. Fabrication of amorphous curcumin nanosuspensions using β-lactoglobulin to enhance solubility, stability, and bioavailability[J]. Colloids and Surfaces B: Biointerfaces, 2015, 127:114-121.
[28] FU D W, TIAN Y, WANG Z H, et al. Development of an Antarctic krill oil based self-microemulsion drug delivery system and its enhancement of bioaccessibility for curcumin[J]. Food Bioscience, 2023, 53:102762.
[29] LIU W J, PAN N, HAN Y, et al. Solubilization, stability and antioxidant activity of curcumin in a novel surfactant-free microemulsion system[J]. LWT, 2021, 147:111583.
[30] ZAINUDDIN N, AHMAD I, ZULFAKAR M H, et al. Cetyltrimethylammonium bromide-nanocrystalline cellulose (CTAB-NCC) based microemulsions for enhancement of topical delivery of curcumin[J]. Carbohydrate Polymers, 2021, 254:117401.
[31] 包海蓉, 陈百科. 固体分散体的制备及其在保健食品中的应用[J]. 食品工业科技, 2021, 42(16):397-403.
BAO H R, CHEN B K. Preparation of solid dispersion and its application in functional food[J]. Science and Technology of Food Industry, 2021, 42(16):397-403.
[32] XI Z Y, FEI Y L, WANG Y X, et al. Solubility improvement of curcumin by crystallization inhibition from polymeric surfactants in amorphous solid dispersions[J]. Journal of Drug Delivery Science and Technology, 2023, 83:104351.[LinkOut]
[33] FAN N, MA P P, WANG X, et al. Storage stability and solubilization ability of HPMC in curcumin amorphous solid dispersions formulated by Eudragit E100[J]. Carbohydrate Polymers, 2018, 199:492-498.
[34] 任莉莉, 陈静, 李先君, 等. 姜黄素固体分散体高效制备工艺优选[J]. 食品与药品, 2022, 24(4):300-303.
REN L L, CHEN J, LI X J, et al. Optimization of efficient preparation technology of curcumin solid dispersion[J]. Food and Drug, 2022, 24(4):300-303.
[35] 韩加伟. 基于绿色工艺的姜黄素固体分散体制备与体内外评价[D]. 南京: 南京中医药大学, 2019.
HAN J W. Preparation of curcumin solid dispersion based on green technology and its evaluation in vivo and in vitro[D]. Nanjing: Nanjing University of Chinese Medicine, 2019.
[36] 常道潇. 姜黄素-甘草酸固体分散体的制备与评价[D]. 银川: 宁夏医科大学, 2018.
CHANG D X. Preparation and evaluation of curcumin-glycyrrhizin solid dispersion[D]. Yinchuan: Ningxia Medical University, 2018.
[37] PAN-ON S, TIYABOONCHAI W. Development, characterization and Caco-2 cells absorption of curcumin solid dispersion for oral administration[J]. Journal of Drug Delivery Science and Technology, 2023, 86:104574.
[38] LANG W, TAGAMI T, KANG H J, et al. Partial depolymerization of tamarind seed xyloglucan and its functionality toward enhancing the solubility of curcumin[J]. Carbohydrate Polymers, 2023, 307:120629.
[39] ANSARIFAR E, SHAHIDI F, MOHEBBI M, et al. Optimization of limonene microencapsulation based on native and fibril soy protein isolate by VIKOR method[J]. LWT, 2019, 115:107884.
[40] JI F Y, XU J J, LIU H H, et al. Improved water solubility, antioxidant, and sustained-release properties of curcumin through the complexation with soy protein fibrils[J]. LWT, 2023, 180:114723.
[41] MOHAMMADIAN M, SALAMI M, MOMEN S, et al. Enhancing the aqueous solubility of curcumin at acidic condition through the complexation with whey protein nanofibrils[J]. Food Hydrocolloids, 2019, 87:902-914.
[42] HU Y, HE C X, JIANG C J, et al. Complexation with whey protein fibrils and chitosan: A potential vehicle for curcumin with improved aqueous dispersion stability and enhanced antioxidant activity[J]. Food Hydrocolloids, 2020, 104:105729.
[43] 吕晨艳,江政辉,赵广华.一种提高姜黄素水溶性和小肠消化稳定性的方法:中国, CN113907353A[P].2022-01-11.
LYU C Y, JIANG Z H, ZHAO G H. A method for improving the water solubility and digestive stability of curcumin in small intestine: China, CN113907353A[P].2022-01-11.
[44] LI L, YAO P. High dispersity, stability and bioaccessibility of curcumin by assembling with deamidated zein peptide[J]. Food Chemistry, 2020, 319:126577.
[45] LANGRIDGE T D, GEMEINHART R A. Toward understanding polymer micelle stability: Density ultracentrifugation offers insight into polymer micelle stability in human fluids[J]. Journal of Controlled Release, 2020, 319:157-167.
[46] 赵晨阳. 氨基酸对辛烯基琥珀酸燕麦β-葡聚糖酯自聚集行为的影响及其机制研究[D]. 重庆: 西南大学, 2020.
ZHAO C Y. The effects of amino acids on the self-aggregation behavior of octenylsuccinated oat β-glucan micelles and its mechanisms[D]. Chongqing: Southwest University, 2020.
[47] ZHANG Q H, WANG H, FENG Z M, et al. Preparation of pectin-tannic acid coated core-shell nanoparticle for enhanced bioavailability and antihyperlipidemic activity of curcumin[J]. Food Hydrocolloids, 2021, 119:106858.
[48] 高丽, 刘嘉, 董楠, 等. OSG胶束增溶姜黄素在果汁中的热及贮藏稳定性[J]. 食品与发酵工业, 2016, 42(8):71-74.
GAO L, LIU J, DONG N, et al. Thermal and storage stability of solubilized curcumin in OSG micelles using in juices[J]. Food and Fermentation Industries, 2016, 42(8):71-74.
[49] YE F Y, LEI D D, WANG S M, et al. Polymeric micelles of octenylsuccinated corn dextrin as vehicles to solubilize curcumin[J]. LWT, 2017, 75:187-194.
[50] WANG Y Y, JIANG W, JIANG Y C, et al. Self-assembled nano-micelles of lactoferrin peptides: Structure, physicochemical properties, and application for encapsulating and delivering curcumin[J]. Food Chemistry, 2022, 387:132790.
[51] ZHI K K, WANG R X, WEI J Q, et al. Self-assembled micelles of dual-modified starch via hydroxypropylation and subsequent debranching with improved solubility and stability of curcumin[J]. Food Hydrocolloids, 2021, 118:106809.
[52] LIU Q, LI F, JI N, et al. Acetylated debranched starch micelles as a promising nanocarrier for curcumin[J]. Food Hydrocolloids, 2021, 111:106253.