研究报告

超声辅助虾头自溶制备热滞活性产物的工艺研究

  • 韩梅 ,
  • 欧阳及锦 ,
  • 陈秀娟 ,
  • JULIETH Majura ,
  • 陈忠琴 ,
  • 高加龙 ,
  • 郑惠娜 ,
  • 林海生 ,
  • 曹文红
展开
  • 1(广东海洋大学 食品科技学院,国家贝类加工技术研发分中心(湛江),广东省水产品加工与安全重点实验室,广东省海洋食品工程技术研究中心,广东省海洋生物制品工程实验室,广东 湛江,524088)
    2(海洋食品精深加工关键技术省部共建协同创新中心,大连工业大学,辽宁 大连,116034)
第一作者:硕士研究生(曹文红教授为通信作者,E-mail:cchunlin@163.com)

收稿日期: 2023-07-07

  修回日期: 2023-08-01

  网络出版日期: 2024-08-21

基金资助

国家自然科学基金项目(321721631006813)

Research on process of ultrasound-assisted autolysis of shrimp head to prepare active products with thermal hysteresis activity

  • HAN Mei ,
  • OUYANG Jijin ,
  • CHEN Xiujuan ,
  • JULIETH Majura ,
  • CHEN Zhongqin ,
  • GAO Jialong ,
  • ZHENG Huina ,
  • LIN Haisheng ,
  • CAO Wenhong
Expand
  • 1(College of Food Science and Technology, Guangdong Ocean University, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China)
    2(Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China)

Received date: 2023-07-07

  Revised date: 2023-08-01

  Online published: 2024-08-21

摘要

为探究影响超声辅助虾头自溶制备热滞活性(thermal hysteresis activity, THA)产物的因素,该文以水解度为指标,通过Plackett-Burman筛选因子设计,从7个因素中筛选出了超声时间、超声功率、自溶pH、自溶温度、自溶时间,并进行了单因素试验与正交设计,优化出超声辅助虾头自溶的工艺,并探究了不同时间的产物组成变化与热滞活性的关系。结果表明超声功率300 W、超声15 min、pH 8.0、温度50 ℃、自溶时间3 h时,自溶效果最好,水解度为35.24%。在最优的工艺下进行自溶曲线的实验,发现自溶2 h的产物活性最高;通过关联性分析发现其THA与水解度和氨基酸组成呈强相关关系。自溶2 h时的THA高达1.4 ℃,水解度为27.18%,其多肽中的抗冻特征性氨基酸含量之和达58.05%。超声辅助虾头自溶对其自溶有促进作用,有开发新型、安全、高效的热滞活性产物的潜力。

本文引用格式

韩梅 , 欧阳及锦 , 陈秀娟 , JULIETH Majura , 陈忠琴 , 高加龙 , 郑惠娜 , 林海生 , 曹文红 . 超声辅助虾头自溶制备热滞活性产物的工艺研究[J]. 食品与发酵工业, 2024 , 50(15) : 196 -204 . DOI: 10.13995/j.cnki.11-1802/ts.036696

Abstract

Using the degree of hydrolysis as an index, the Plackett-Burman design was adopted to explore the factors affecting the preparation of thermal hysteresis activity (THA) products by ultrasonic-assisted autolysis of shrimp heads.Ultrasonic time, ultrasonic power, autolysis pH, autolysis temperature, and autolysis time were selected from 7 factors.Single factor test and orthogonal design were carried out to optimize the process of ultrasonic-assisted autolysis of shrimp head, and the relationship between product composition and thermal hysteresis activity at different times was explored.Results showed that the autolysis effect was the best when the ultrasonic power was 300 W, the ultrasonic power was 15 min, the pH was 8.0, the temperature was 50 ℃, the autolysis time was 3 h, and the hydrolysis degree was 35.24 %.The autolysis curve experiment was carried out under the optimal process, and it was found that the product of autolysis for 2 h had the highest activity.Correlation analysis showed that THA was strongly correlated with hydrolysis degree and amino acid composition.When the THA at autolysis for 2 h was as high as 1.4 ℃, the degree of hydrolysis was 27.18 %, and the sum of the characteristic anti-freezing amino acid content in the peptides was 58.05 %.Ultrasound-assisted autolysis of shrimp head can promote its autolysis and potentially develop new, safe, and efficient thermal hysteresis active products.

参考文献

[1] YU Q Y, LIU J, LIU Y Y, et al.Inhibitive effect of cryoprotectants on the oxidative and structural changes in myofibrillar proteins of unwashed mince from silver carp during frozen storage[J].Food Research International, 2022, 161:111880.
[2] LIU Z L, YANG W G, WEI H M, et al.The mechanisms and applications of cryoprotectants in aquatic products:An overview[J].Food Chemistry, 2023, 408:135202.
[3] WANG F X, CUI M L, LIU H D, et al.Characterization and identification of a fraction from silver carp (Hypophthalmichthys molitrix) muscle hydrolysates with cryoprotective effects on yeast[J].LWT, 2021, 137:110388.
[4] WU J H, RONG Y Z, WANG Z W, et al.Isolation and characterisation of sericin antifreeze peptides and molecular dynamics modelling of their ice-binding interaction[J].Food Chemistry, 2015, 174:621-629.
[5] CHEN X, WU J H, LI X Z, et al.Investigation of the cryoprotective mechanism and effect on quality characteristics of surimi during freezing storage by antifreeze peptides[J].Food Chemistry, 2022, 371:131054.
[6] 陈旭, 蔡茜茜, 汪少芸, 等.抗冻肽的研究进展及其在食品工业的应用前景[J].食品科学, 2019, 40(17):331-337.
CHEN X, CAI Q Q, WANG S Y, et al.Recent progress and application prospects of antifreeze peptides in food industry[J].Food Science, 2019, 40(17):331-337.
[7] CAO H, ZHAO Y, ZHU Y B, et al.Antifreeze and cryoprotective activities of ice-binding collagen peptides from pig skin[J].Food Chemistry, 2016, 194:1245-1253.
[8] ISLAM M S, KHAN S, TANAKA M.Waste loading in shrimp and fish processing effluents:Potential source of hazards to the coastal and nearshore environments[J].Marine Pollution Bulletin, 2004, 49(1-2):103-110.
[9] 朱国萍, 曹文红, 章超桦, 等.凡纳滨对虾虾头自溶动力学[J].水产学报, 2010, 34(3):395-403.
ZHU G P, CAO W H, ZHANG C H, et al.Autolysis kinetics of Litopenaeus vannamei head[J].Journal of Fisheries of China, 2010, 34(3):395-403.
[10] CAHÚ T B, SANTOS S D, MENDES A, et al.Recovery of protein, chitin, carotenoids and glycosaminoglycans from Pacific white shrimp (Litopenaeus vannamei) processing waste[J].Process Biochemistry, 2012, 47(4):570-577.
[11] ZHU K, ZHENG Z X, DAI Z Y.Identification of antifreeze peptides in shrimp byproducts autolysate using peptidomics and bioinformatics[J].Food Chemistry, 2022, 383:132568.
[12] AGUILERA A F, LINDROOS P, RAHKILA J, et al.Lipase catalyzed green epoxidation of oleic acid using ultrasound as a process intensification method[J].Chemical Engineering and Processing-Process Intensification, 2022, 174:108882.
[13] YUSOFF I M, MAT TAHER Z, RAHMAT Z, et al.A review of ultrasound-assisted extraction for plant bioactive compounds:Phenolics, flavonoids, thymols, saponins and proteins[J].Food Research International, 2022, 157:111268.
[14] PEZESHK S, REZAEI M, HOSSEINI H, et al.Ultrasound-assisted alkaline pH-shift process effects on structural and interfacial properties of proteins isolated from shrimp by-products[J].Food Structure, 2022, 32:100273.
[15] 耿军凤, 张丽芬, 陈复生, 等.超声波辅助酶技术在食品蛋白质中的应用研究[J].食品工业, 2019, 40(1):237-242.
GENG J F, ZHANG L F, CHEN F S, et al.Application of ultrasound assisted enzyme technology in food protein[J].The Food Industry, 2019, 40(1):237-242.
[16] CAO W H, ZHANG C H, HONG P Z, et al.Response surface methodology for autolysis parameters optimization of shrimp head and amino acids released during autolysis[J].Food Chemistry, 2008, 109(1):176-183.
[17] 郑惠娜, 章超桦, 吉宏武, 等.Plackett-Burman设计在胰酶酶解马氏珠母贝肉蛋白主要影响因子筛选中的应用[J].食品科技, 2010, 35(12):28-32.
ZHENG H N, ZHANG C H, JI H W, et al.The Plackett-Burman design for screening of the variables in the hydrolysis of Pinctada martensii meat protein by pancreatin[J].Food Science and Technology, 2010, 35(12):28-32.
[18] 赵新淮, 冯志彪.蛋白质水解物水解度的测定[J].食品科学, 1994, 15(11):65-67.
ZHAO X H, FENG Z B.Determination of degree of hydrolysis of protein hydrolysate[J].Food Science, 1994, 15(11):65-67.
[19] CAO L, MAJURA J J, LIU L, et al.The cryoprotective activity of tilapia skin collagen hydrolysate and the structure elucidation of its antifreeze peptide[J].LWT, 2023, 179:114670.
[20] NADAR S S, RAO P, RATHOD V K.Enzyme assisted extraction of biomolecules as an approach to novel extraction technology:A review[J].Food Research International, 2018, 108:309-330.
[21] PEZESHK S, REZAEI M, HOSSEINI H, et al.Impact of pH-shift processing combined with ultrasonication on structural and functional properties of proteins isolated from rainbow trout by-products[J].Food Hydrocolloids, 2021, 118:106768.
[22] 许依能, 纪登杰, 杨威, 等.超声辅助酶法制备南极磷虾抗菌肽的工艺优化[J].中国食品添加剂, 2022, 33(5):73-80.
XU Y N, JI D J, YANG W, et al.Optimization of ultrasonic-assisted enzymatic extraction of antimicrobial peptides from Antarctic krill[J].China Food Additives, 2022, 33(5):73-80.
[23] CAO W H, ZHANG C H, HONG P Z, et al.Autolysis of shrimp head by gradual temperature and nutritional quality of the resulting hydrolysate[J].LWT, 2009, 42(1):244-249.
[24] WANG W L, CHEN M S, WU J H, et al.Hypothermia protection effect of antifreeze peptides from pigskin collagen on freeze-dried Streptococcus thermophiles and its possible action mechanism[J].LWT-Food Science and Technology, 2015, 63(2):878-885.
[25] CORCILIUS L, SANTHAKUMAR G, STONE R S, et al.Synthesis of peptides and glycopeptides with polyproline II helical topology as potential antifreeze molecules[J].Bioorganic & Medicinal Chemistry, 2013, 21(12):3569-3581.
[26] XIANG X, LANG M, LI Y, et al.Purification, identification and molecular mechanism of dipeptidyl peptidase IV inhibitory peptides from discarded shrimp (Penaeus vannamei) head[J].Journal of Chromatography.B, Analytical Technologies in the Biomedical and Life Sciences, 2021, 1186:122990.
[27] FU W Q, WANG P X, CHEN Y Y, et al.Preparation, primary structure and antifreeze activity of antifreeze peptides from Scomberomorus niphonius skin[J].LWT, 2019, 101:670-677.
[28] ASUERO A G, SAYAGO A, GONZÁLEZ A G.The correlation coefficient:An overview[J].Critical Reviews in Analytical Chemistry, 2006, 36(1):41-59.
文章导航

/