研究报告

热改性豌豆分离蛋白与卡拉胶复合相行为及表征

  • 陈永佳 ,
  • 唐佳 ,
  • 胡俊娴 ,
  • 朱承新 ,
  • 杨楠
展开
  • (湖北工业大学 生命科学与健康工程学院,湖北 武汉,430068)
第一作者:硕士研究生(杨楠教授为通信作者,E-mail:nanyang@hbut.edu.cn)

收稿日期: 2024-04-12

  修回日期: 2024-05-09

  网络出版日期: 2024-09-19

基金资助

国家自然科学基金面上项目(31571797);湖北省自然科学基金杰出青年项目(2021CFA070);湖北工业大学绿色工业引领计划-杰出人才项目(XJ2021005401)

Heat-treated pea protein isolated/carrageenan complex coacervates: Phase behaviors and characterization

  • CHEN Yongjia ,
  • TANG Jia ,
  • HU Junxian ,
  • ZHU Chengxin ,
  • YANG Nan
Expand
  • (School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China)

Received date: 2024-04-12

  Revised date: 2024-05-09

  Online published: 2024-09-19

摘要

该研究采用ζ-电位法和浊度滴定法评价了卡拉胶(carrageenan, CG)类型(κCG,ιCG,λCG)对热改性豌豆分离蛋白(heat-treated pea protein isolated,HPPI)在不同质量比(0.5∶1~6∶1)和不同pH(7.0~2.0)相行为的影响,并对不同类型复合物进行了表征。结果表明,卡拉胶电荷密度对相变过程有显著影响,HPPI和κCG,ιCG、λCG的临界质量混合比分别是1.5∶1、3∶1、3∶1;3种卡拉胶均能抵抗HPPI的聚集,但是ιCG具有最好的抵抗效果,可归因于其独特的分子构型和硫酸盐数量,HPPI和3种卡拉胶的相图均可以分为3个相区;HPPI和ιCG以静电相互作用和氢键结合形成复合物,相比于单独的HPPI,复合物的疏水性降低,并且呈团簇和聚集态分布。该研究对于更深入了解蛋白质和多糖的相互作用以及对食品系统的设计和稳定性调控具有重要意义。

本文引用格式

陈永佳 , 唐佳 , 胡俊娴 , 朱承新 , 杨楠 . 热改性豌豆分离蛋白与卡拉胶复合相行为及表征[J]. 食品与发酵工业, 2024 , 50(16) : 85 -92 . DOI: 10.13995/j.cnki.11-1802/ts.039546

Abstract

The application of heat-treated pea protein isolated (HPPI) in food is often limited by aggregation after heating, whereas the formation of complexes with carrageenan can solve this problem.This study evaluated the impact of carrageenan (CG) types (κCG, ιCG, λCG) on the phase behavior of HPPI at different mixing mass ratios (6∶1-0.5∶1) and different pH values (7-2) using ζ-potential and turbidity titration methods, and different types of complexes were characterized.Results indicated that the charge density of carrageenan could significantly affect the phase transition process.The critical mixing mass ratio of HPPI-κCG, ιCG, and λCG was 1.5∶1, 3∶1, and 3∶1, respectively.The three kinds of carrageenan could resist HPPI aggregation, but ιCG exhibited the best resistance, attributed to its unique molecular configuration and sulfate content.The phase diagrams of HPPI and the three carrageenans could be divided into three phase regions.HPPI and ιCG formed a complex through electrostatic interactions and hydrogen bonding.Compared to HPPI alone, the complex exhibited reduced hydrophobicity and was distributed in clusters and aggregates.This study is of significant importance for a deeper understanding of the interactions between proteins and polysaccharides and for the design and stability control of food systems.

参考文献

[1] ELMER C, KARACA A C, LOW N H, et al.Complex coacervation in pea protein isolate-chitosan mixtures[J].Food Research International, 2011, 44(5):1441-1446.
[2] 胡纪华, 杨兆禧, 郑忠.胶体与界面化学[M].广州:华南理工大学出版社, 1997.
HU J H, YANG Z, ZHENG Z.Colloid and Interfacial Chemistry[M].Guangzhou:South China University of Technology Press, 1997.
[3] LI X Y, FANG Y P, AL-ASSAF S, et al.Complexation of bovine serum albumin and sugar beet pectin:Structural transitions and phase diagram[J].Langmuir, 2012, 28(27):10164-10176.
[4] ZHONG W G, LI C Q, DIAO M X, et al.Characterization of interactions between whey protein isolate and hyaluronic acid in aqueous solution:Effects of pH and mixing ratio[J].Colloids and Surfaces B:Biointerfaces, 2021, 203:111758.
[5] 沈可洁. 豌豆分离蛋白/多糖复合乳液的制备及性质研究[D].无锡:江南大学, 2022.
SHEN K J.Study on the properties of emulsions stabilized by pea protein isolate/polysaccharide complexes[D].Wuxi:Jiangnan University,2022.
[6] 徐瑶. 多糖分子量对蛋白质/多糖静电复合及其食品功能特性影响研究[D].武汉:湖北工业大学, 2020.
XU Y.Effects of molecular weight of polysaccharides on protein/polysaccharide electrostatic complexation and its functional properties[D].Wuhan:Hubei University of Technology, 2020.
[7] VINAYAHAN T, WILLIAMS P A, PHILLIPS G O.Electrostatic interaction and complex formation between gum Arabic and bovine serum albumin[J].Biomacromolecules, 2010, 11(12):3367-3374.
[8] MEKHLOUFI G, SANCHEZ C, RENARD D, et al.pH-induced structural transitions during complexation and coacervation of β-lactoglobulin and acacia gum[J].Langmuir, 2005, 21(1):386-394.
[9] 王丽杰. 乳清分离蛋白/λ-卡拉胶相互作用及其复合物功能性研究[D].沈阳:沈阳农业大学, 2019.
Wang L J.Studies on the interaction of whey protein isolate/λ-carrageenan and the functional properties of their complex[D].Shenyang:Shenyang Agricultural University,2019.
[10] NADERI B, KERAMAT J, NASIRPOUR A, et al.Complex coacervation between oak protein isolate and gum Arabic:Optimization & functional characterization[J].International Journal of Food Properties, 2020, 23(1):1854-1873.
[11] LIU J, SHIM Y Y, WANG Y, et al.Intermolecular interaction and complex coacervation between bovine serum albumin and gum from whole flaxseed (Linum usitatissimum L.)[J].Food Hydrocolloids, 2015, 49:95-103.
[12] STONE A K, CHEUNG L, CHANG C, et al.Formation and functionality of soluble and insoluble electrostatic complexes within mixtures of canola protein isolate and (κ-, ι- and λ-type) carrageenan[J].Food Research International, 2013, 54(1):195-202.
[13] RABELO R S, TAVARES G M, PRATA A S, et al.Complexation of chitosan with gum Arabic, sodium alginate and κ-carrageenan:Effects of pH, polymer ratio and salt concentration[J].Carbohydrate Polymers, 2019, 223:115120.
[14] KLASSEN D R, ELMER C M, NICKERSON M T.Associative phase separation involving canola protein isolate with both sulphated and carboxylated polysaccharides[J].Food Chemistry, 2011, 126(3):1094-1101.
[15] KLEMMER K J, WALDNER L, STONE A, et al.Complex coacervation of pea protein isolate and alginate polysaccharides[J].Food Chemistry, 2012, 130(3):710-715.
[16] WANG Y X, GHOSH S, NICKERSON M T.Effect of biopolymer mixing ratios and aqueous phase conditions on the interfacial and emulsifying properties of lentil protein isolate-κ-carrageenan and lentil protein isolate-ι-carrageenan complexes[J].Cereal Chemistry, 2022, 99(1):169-183.
[17] STONE A K, NICKERSON M T.Formation and functionality of whey protein isolate-(κ, ι-, and λ-type) carrageenan electrostatic complexes[J].Food Hydrocolloids, 2012, 27(2):271-277.
[18] WU N N, YANG X Q, TENG Z, et al.Stabilization of soybean oil body emulsions using κ, ι, λ-carrageenan at different pH values[J].Food Research International, 2011, 44(4):1059-1068.
[19] UDO T, MUMMALETI G, MOHAN A, et al.Current and emerging applications of carrageenan in the food industry[J].Food Research International, 2023, 173:113369.
[20] YANG H Y, YANG S N, KONG J L, et al. Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy. Nature Protocols, 2015, 10(3):382-396.
[21] TANG M X, LEI Y C, WANG Y, et al. Rheological and structural properties of sodium caseinate as influenced by locust bean gum and κ-carrageenan. Food Hydrocolloids, 2021, 112:106251.
[22] ZOU W J, MOURAD F K, ZHANG X Y, et al. Phase separation behavior and characterization of ovalbumin and propylene glycol alginate complex coacervates. Food Hydrocolloids, 2020, 108:105978.
[23] ZHU X W, CHEN Y T, HU Y X, et al. Tuning the molecular interactions between gliadin and tannic acid to prepare Pickering stabilizers with improved emulsifying properties. Food Hydrocolloids, 2021, 111:106179.
[24] TANG S, LI J S, HUANG G X, et al. Predicting protein surface property with its surface hydrophobicity. Protein and Peptide Letters, 2021, 28(8):938-944.
[25] SHEN Q, LI J, SHEN X J, et al. Linear and nonlinear interface rheological behaviors and structural properties of pea protein (vicilin, legumin, albumin). Food Hydrocolloids, 2023, 139:108500.
文章导航

/