研究报告

白茅根多糖理化性质及对HepG2细胞的降糖作用研究

  • 魏菱鸽 ,
  • 李慧 ,
  • 米圣成 ,
  • 路祺 ,
  • 朱明华
展开
  • 1(东北林业大学 生命科学学院,黑龙江 哈尔滨,150040)
    2(东北林业大学 化学与资源利用学院,黑龙江 哈尔滨,150040)
    3(哈尔滨职业技术学院 医学院,黑龙江 哈尔滨,150081)
第一作者:硕士研究生(朱明华副教授为通信作者,E-mail:zmh_lq@126.com)

收稿日期: 2023-08-20

  修回日期: 2023-09-21

  网络出版日期: 2024-10-10

基金资助

黑龙江省自然基金项目-联合引导项目(LH2022C005)

Physicochemical properties and hypoglycemic effect of polysaccharides from Rhizoma imperatae on HepG2 cells

  • WEI Lingge ,
  • LI Hui ,
  • MI Shengcheng ,
  • LU Qi ,
  • ZHU Minghua
Expand
  • 1(College of Life Sciences, Northeast Forestry University, Harbin 150040, China)
    2(College of Chemistry, Chemical Engineering Resource Utilization, Northeast Forestry University, Harbin 150040, China)
    3(Medical school, Harbin Vocational & Technical College, Harbin 150081, China)

Received date: 2023-08-20

  Revised date: 2023-09-21

  Online published: 2024-10-10

摘要

该文以高温高压超声波辅助法提取白茅根多糖(Rhizoma imperatae polysaccharides,RPS),通过响应面法优化RPS提取工艺。经Sevag法脱蛋白,DEAE-DE纤维素52层析柱和Sephadex G-100凝胶层析柱分离纯化,得到2种RPS(RPS-DS0和RPS-DS0.1)。采用α-淀粉酶抑制实验,测定RPS的体外降糖作用。构建胰岛素抵抗HepG2细胞(insulin-resistant HepG2,IR-HepG2)模型,测定RPS-DS0.1对IR-HepG2细胞中葡萄糖消耗量、糖原含量、己糖激酶和丙酮酸激酶活性的影响。结果表明,在液料比(mL∶g)为20∶1、提取温度112 ℃、提取时间15 min、超声波功率410 W、超声波处理时间25 min时,RPS质量分数得率为14.79%。RPS-DS0和RPS-DS0.1是分子质量分别为179.14 kDa和29.79 kDa的均一中性多糖。RPS-DS0由阿拉伯糖、半乳糖、葡萄糖、木糖和甘露糖组成,其物质的量比为6.79∶9.68∶75.52∶4.38∶1.88。RPS-DS0.1由鼠李糖、阿拉伯糖、半乳糖、葡萄糖、木糖、甘露糖和葡萄糖醛酸组成,其物质的量比为2.48∶11.76∶20.08∶50.92∶10.25∶2.08∶2.12。RPS-DS0和RPS-DS0.1对α-淀粉酶的半数抑制浓度分别为0.40和0.21 mg/mL。细胞实验结果表明,RPS-DS0.1能显著提高IR-HepG2细胞中葡萄糖消耗量、糖原含量、己糖激酶和丙酮酸激酶活性,调节糖代谢,从而达到降糖作用。

本文引用格式

魏菱鸽 , 李慧 , 米圣成 , 路祺 , 朱明华 . 白茅根多糖理化性质及对HepG2细胞的降糖作用研究[J]. 食品与发酵工业, 2024 , 50(17) : 198 -208 . DOI: 10.13995/j.cnki.11-1802/ts.037115

Abstract

In this study, Rhizoma imperatae polysaccharides (RPS) were extracted using a high-temperature, high-pressure ultrasonic-assisted method.The extraction process of RPS was optimized using response surface methodology.After deproteinization using the Sevag method, two types of polysaccharides from R.imperatae (RPS-DS0 and RPS-DS0.1) were obtained through separation and purification using DEAE-DE cellulose 52 chromatography column and Sephadex G-100 gel chromatography column.The hypoglycemic effect of RPS was determined using the α-amylase inhibition test in vitro.The insulin-resistant HepG2 (IR-HepG2) cell model was constructed to determine the effects of RPS-DS0.1 on glucose consumption, glycogen content, hexokinase, and pyruvate kinase activities in IR-HepG2 cells.The RPS mass fraction yield was found to be 14.79% under specific conditions including a liquid-feed ratio of 20∶1 (mL∶g), extraction temperature of 112 ℃, extraction time of 15 min, ultrasonic power of 410 W, and ultrasonic time of 25 min.The neutral polysaccharides RPS-DS0and RPS-DS0.1 were found to have molecular weights of 179.14 kDa and 29.79 kDa, respectively, and were homogeneous.RPS-DS0 consisted of arabinose, galactose, glucose, xylose, and mannose in a molar ratio of 6.79∶9.68∶75.52∶4.38∶1.88.RPS-DS0.1 consisted of rhamnose, arabinose, galactose, glucose, xylose, mannose, and glucuronic acid in a molar ratio of 2.48∶11.76∶20.08∶50.92∶10.25∶2.08∶2.12.The half maximal inhibitory concentration of RPS-DS0 and RPS-DS0.1 on α-amylase were determined to be 0.40 mg/mL and 0.21 mg/mL, respectively.The cellular experiments demonstrated that RPS-DS0.1 significantly increased glucose consumption, glycogen content and hexokinase levels in IR-HepG2 cells, as well as regulated glucose metabolism, ultimately leading to a hypoglycemic effect.

参考文献

[1] 王伟, 郭庆梅, 周凤琴.白茅根的药效考证与现代研究比较[J].中国海洋药物, 2014, 33(5):92-96.
WANG W, GUO Q M, ZHOU F Q.The comparison of textual research on the efficacy and the modern research of Imperatae Rhizoma[J].Chinese Journal of Marine Drugs, 2014, 33(5):92-96.
[2] 崔珏, 李超, 尤健, 等.白茅根多糖改善糖尿病小鼠糖脂代谢作用的研究[J].食品科学, 2012, 33(19):302-305.
CUI J, LI C, YOU J, et al.Effects of Imperata cylindrica polysaccharides on glucose and lipid metabolism in diabetic mice[J].Food Science, 2012, 33(19):302-305.
[3] ZHU J, HAN J F, LIU L H, et al.Clinical expert consensus on the assessment and protection of pancreatic islet β-cell function in type 2 diabetes mellitus[J].Diabetes Research and Clinical Practice, 2023, 197:110568.
[4] WANG M J, CHEN M, GUO R, et al.The improvement of sulforaphane in type 2 diabetes mellitus (T2DM) and related complications:A review[J].Trends in Food Science & Technology, 2022, 129:397-407.
[5] 魏波, 陈玮婷, 刘腾, 等.注射胰岛素过量致低血糖昏迷一例[J].临床药物治疗杂志, 2021, 19(7):75-78.
WEI B, CHEN W T, LIU T, et al.A case of hypoglycemic coma caused by excessive insulin injection[J].Clinical Medication Journal, 2021, 19(7):75-78.
[6] 武晓艳, 叶钰怡, 任文凯, 等.植物多糖研究进展:功能活性及潜在机制[J].中国科学:生命科学, 2023, 53(6):808-824.
WU X Y, YE Y Y, REN W K, et al.Research progress of plant polysaccharides:Functional activities and potential mechanisms[J].Scientia Sinica (Vitae), 2023, 53(6):808-824.
[7] 张拥军, 姚惠源, 龚院生, 等.南瓜多糖的分离提取及其降血糖作用的研究[J].食品科技, 2001, 26(5):15-16;18.
ZHANG Y J, YAO H Y, GONG Y S, et al.Study on extraction and separation of pumpkin polysaccharide and it’s glucatonic effect[J].Food Science and Technology, 2001, 26(5):15-16;18.
[8] 陈斌. 植物多糖在化妆品中的应用研究进展[J].中国野生植物资源, 2020, 39(4):44-47.
CHEN B.Research progress on the application of plant polysaccharide in cosmetics[J].Chinese Wild Plant Resources, 2020, 39(4):44-47.
[9] 王亦欣, 陈茜, 匡映, 等.植物多糖气凝胶材料应用的研究进展[J].武汉工程大学学报, 2017, 39(5):443-449.
WANG Y X, CHEN X, KUANG Y, et al.Progress in application of polysaccharide aerogels[J].Journal of Wuhan Institute of Technology, 2017, 39(5):443-449.
[10] 于淑池, 陈文, 杭瑜瑜, 等.海南苦丁茶多糖的降血糖功效评价[J].食品研究与开发, 2017, 38(4):161-164.
YU S C, CHEN W, HANG Y Y, et al.An evaluation on the hypoglycemic efficacy of polysaccharide from Hainan Kudingtea[J].Food Research and Development, 2017, 38(4):161-164.
[11] 董英, 张慧慧.苦瓜多糖降血糖活性成分的研究[J].营养学报, 2008, 30(1):54-56.
DONG Y, ZHANG H H.Studies on components with antihyperglycemic effect of Momordica charantia L.polysaccharides[J].Acta Nutrimenta Sinica, 2008, 30(1):54-56.
[12] ZENG C B, YE G Y, LI G C, et al.RID serve as a more appropriate measure than phenol sulfuric acid method for natural water-soluble polysaccharides quantification[J].Carbohydrate Polymers, 2022, 278:118928.
[13] XIE L, YAN H J, HAN L W, et al.Structural characterization and anti-inflammatory activity of neutral polysaccharides from American ginseng[J].International Journal of Biological Macromolecules, 2023, 248:125586.
[14] ZHU M Q, HUANG R M, WEN P, et al.Structural characterization and immunological activity of pectin polysaccharide from kiwano (Cucumis metuliferus) peels[J].Carbohydrate Polymers, 2021, 254:117371.
[15] 高浩天. 牛蒡子多糖的制备、结构鉴定及降糖活性研究[D].西安:陕西科技大学, 2021.
GAO H T.Study on preparation, structure identification and hypoglycemic activity of Fructus Arctii polysaccharide[D].Xi’an:Shaanxi University of Science & Technology, 2021.
[16] YUN C, JI X C, CHEN Y W, et al.Ultrasound-assisted enzymatic extraction of Scutellaria baicalensis root polysaccharide and its hypoglycemic and immunomodulatory activities[J].International Journal of Biological Macromolecules, 2023, 227:134-145.
[17] 陈淑芳, 黎庆涛, 黄凯, 等.篱栏网多糖的提取工艺优化及抗氧化活性[J].应用化工, 2021, 50(11):3031-3035.
CHEN S F, LI Q T, HUANG K, et al.Optimization of extraction process of polysaccharide from Merremia hederacea and its antioxidant activity[J].Applied Chemical Industry, 2021, 50(11):3031-3035.
[18] 黄明浩, 黄泰奇, 邓丽娟.响应面法优化白英粗多糖提取工艺及其体外抗氧化活性的分析[J].食品工业科技, 2023, 44(22):219-225.
HUANG M H, HUANG T Q, DENG L J.Optimization of Solanum lyratum crude polysaccharide extraction process using response surface methodology and analysis of its in vitro antioxidant activity[J].Science and Technology of Food Industry, 2023, 44(22):219-225.
[19] 任薇. 沙棘多糖抗氧化、抗衰老、抗疲劳与免疫活性的研究[D].乌鲁木齐:新疆农业大学, 2019.
REN W.Studies on Hippophae rhamnoides polysaccharides antioxidant, anti-aging and anti-fatigue and immune activity[D].Urumqi:Xinjiang Agricultural University, 2019.
[20] 李楠, 李桂芬, 刘亚琴, 等.响应面法优化超声提取柳罐枣多糖及其光谱性质研究[J].中国食品添加剂, 2022, 33(5):57-63.
LI N, LI G F, LIU Y Q, et al.Optimization of ultrasonic extraction of polysaccharides from Liuguan jujube by response surface methodology and analysis of its spectral properties[J].China Food Additives, 2022, 33(5):57-63.
[21] 王博, 姚伦广, 鲁云风.山楂皮渣中果胶超声波辅助提取工艺优化与抗氧化性研究[J].粮油食品科技, 2023, 31(4):78-86.
WANG B, YAO L G, LU Y F.Ultrasonic-assisted extraction process optimization and antioxidant activity of pectin from hawthorn peel dregs[J].Science and Technology of Cereals, Oils and Foods, 2023, 31(4):78-86.
[22] 吴金姗, 黄榕, 刘树英, 等.玉簪多糖对细胞氧化应激损伤的保护作用机制[J].食品科学, 2022, 43(17):138-146.
WU J S, HUANG R, LIU S Y, et al.Protective mechanism of polysaccharide from Hosta ventricosa against oxidative damage in cells[J].Food Science, 2022, 43(17):138-146.
[23] 邹一可, 张明月, 王彩云, 等.白茅根多糖IC1的分离及其相对分子质量和单糖组成的测定[J].中国实验方剂学杂志, 2012, 18(2):80-82.
ZOU Y K, ZHANG M Y, WANG C Y, et al.Determination of molecular weight and analysis of monosaccharide composition in isolation of polysaccharide from Imperata cylindrica[J].Chinese Journal of Experimental Traditional Medical Formulae, 2012, 18(2):80-82.
[24] JIANG L F.Cellulase-assisted extraction and antioxidant activity of polysaccharides from Rhizoma imperata[J].Carbohydrate Polymers, 2014, 108:99-102.
[25] 张慢, 潘丽军, 姜绍通, 等.响应面法优化酶-超声波辅助同步提取紫薯花青素工艺[J].食品科学, 2014, 35(10):23-28.
ZHANG M, PAN L J, JIANG S T, et al.Optimization of ultrasonic-assisted enzymatic extraction of anthocyanins from purple sweet potato by response surface methodology[J].Food Science, 2014, 35(10):23-28.
[26] ZHANG Y, YAO L M, LIU Y F, et al.Acidic polysaccharide from corn silk:Structural & conformational properties and hepatoprotective activity[J].International Journal of Biological Macromolecules, 2023, 236:123851.
[27] PAN L, WANG L, ZHANG F, et al.Structural characterization and bifidogenic activity of polysaccharide from Dictyophora indusiata[J].Food Bioscience, 2023, 51:102297.
[28] LIU W J, LI Z Z, FENG C X, et al.The structures of two polysaccharides from Angelica sinensis and their effects on hepatic insulin resistance through blocking RAGE[J].Carbohydrate Polymers, 2022, 280:119001.
[29] KASIMU R, CHEN C L, XIE X Y, et al.Water-soluble polysaccharide from Erythronium sibiricum bulb:Structural characterisation and immunomodulating activity[J].International Journal of Biological Macromolecules, 2017, 105:452-462.
[30] ZLOBIN A A, MARTINSON E A, OVECHKINA I A, et al.Composition and properties of pectin polysaccharides of St.John’s wort Hypericum Perforatum L. [J].Russian Journal of Bioorganic Chemistry, 2012, 38(7):697-701.
[31] ZHANG S, LI X Z.Hypoglycemic activity in vitro of polysaccharides from Camellia oleifera Abel.seed cake[J].International Journal of Biological Macromolecules, 2018, 115:811-819.
[32] ZHANG Z S, WANG X M, MO X F, et al.Degradation and the antioxidant activity of polysaccharide from Enteromorpha linza[J].Carbohydrate Polymers, 2013, 92(2):2084-2087.
[33] 刘楠楠. 黑木耳多糖的提取纯化、结构表征及降糖活性研究[D].西安:陕西科技大学, 2022.
LIU N N.Study on extraction, purification, structure characterization and hypoglycemic activity of auricularia auricularia polysaccharide[D].Xi’an:Shaanxi University of Science and Technology, 2022
[34] SHEN D, LU Y J, TIAN S H, et al.Effects of L-arabinose by hypoglycemic and modulating gut microbiome in a high-fat diet- and streptozotocin-induced mouse model of type 2 diabetes mellitus[J].Journal of Food Biochemistry, 2021, 45(12):e13991.
[35] TANG Y Y, HE X M, LIU G M, et al.Effects of different extraction methods on the structural, antioxidant and hypoglycemic properties of red pitaya stem polysaccharide[J].Food Chemistry, 2023, 405:134804.
[36] 王秋丹, 赵凯迪, 林长青.沙棘多糖对胰岛素抵抗HepG2细胞氧化应激的保护作用与机制[J].食品与机械, 2022, 38(3):167-172.
WANG Q D, ZHAO K D, LIN C Q.Study on the protective effect and mechanism of seabuckthorn polysaccharides on insulin-resistant HepG2 cells from oxidative stress[J].Food & Machinery, 2022, 38(3):167-172.
[37] MA Y, MENG A L, DAI Y M, et al.Hypoglycemic activity of phenols from Pleioblastus amarus (Keng) shells and its main chemical constituents identificatied using UHPLC-Q-TOF-MS[J].Journal of Functional Foods, 2022, 97:105261.
[38] TIAN W T, ZHANG X W, LIU H P, et al.Structural characterization of an acid polysaccharide from Pinellia ternata and its induction effect on apoptosis of Hep G2 cells[J].International Journal of Biological Macromolecules, 2020, 153:451-460.
文章导航

/