研究报告

茯苓多糖组分对复合乳酸菌的冻干保护作用及机理

  • 张喜贺 ,
  • 李淑娅 ,
  • 宋新玲 ,
  • 陈伟
展开
  • 1(山东农业大学 食品科学与工程学院,山东 泰安,271018)
    2(山东大学第二医院,山东 济南,250033)
第一作者:硕士研究生(陈伟教授和宋新玲助理研究员为共同通信作者,E-mail:chenwei@sdau.edu.cn;202262019199@email.sdu.edu.cn)

收稿日期: 2023-09-14

  修回日期: 2023-10-23

  网络出版日期: 2024-10-14

基金资助

山东省重点研发计划(2021TZXD007)

Freeze-drying protective effect and mechanism of component from Poria cocos polysaccharide on compound lactic acid bacteria

  • ZHANG Xihe ,
  • LI Shuya ,
  • SONG Xinling ,
  • CHEN Wei
Expand
  • 1(College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China)
    2(The Second Hospital of Shandong University, Jinan 250033, China)

Received date: 2023-09-14

  Revised date: 2023-10-23

  Online published: 2024-10-14

摘要

为探究茯苓多糖(Poria cocos polysaccharide, PCP)组分对复合乳酸菌冷冻干燥的保护效果,制备茯苓多糖纯化组分,并对其结构进行表征,研究其对复合乳酸菌冷冻干燥的保护效果及作用机理。结果表明,茯苓多糖经分离纯化后得到总糖含量为(96.21±0.39)%的PCP-1,PCP-1的重均分子质量为11 732 Da;主要由葡萄糖和葡萄糖醛酸组成,其摩尔比为0.989∶0.011;PCP-1中存在羟基,同时含有α-糖苷键和β-糖苷键。在基础保护剂中添加PCP-1相较于添加PCP使复合乳酸菌的冻干存活率增加了11.29%。通过扫描电镜观察到添加PCP-1的乳酸菌粉表面更加致密;添加PCP-1后复合乳酸菌的Na+-K+-ATP酶和乳酸脱氢酶的活力比起添加PCP得到显著增强,分别增加了0.66、1.46 U/mg prot;经过碘化丙啶和二乙酸荧光素双重染色后观察到添加PCP-1的复合乳酸菌的细胞膜完整性得到更好的保持。PCP-1可能是通过羟基的存在形成氢键来降低复合乳酸菌的冻干损伤,提高复合乳酸菌的冻干存活率。

本文引用格式

张喜贺 , 李淑娅 , 宋新玲 , 陈伟 . 茯苓多糖组分对复合乳酸菌的冻干保护作用及机理[J]. 食品与发酵工业, 2024 , 50(18) : 134 -140 . DOI: 10.13995/j.cnki.11-1802/ts.037378

Abstract

To explore the protective effect of component from Poria cocos polysaccharide (PCP) on freeze-drying of compound lactic acid bacteria, purified component from Poria cocos polysaccharide was prepared successfully and its structure was characterized, studying its protective effect and mechanism on freeze-drying of compound lactic acid bacteria.Results showed that PCP-1 with total sugar content of (96.21±0.39)% was obtained after isolation and purification, and the weight average molecular weight of PCP-1 was 11 732 Da.PCP-1 is mainly composed of glucose and glucuronic acid, with the molar ratio of 0.989∶0.011.Moreover, there are hydroxyl groups and both α and β glycosidic bonds in PCP-1.Adding PCP-1 into the basic protective agent increased the freeze-dried survival rate of compound lactic acid bacteria by 11.29% when compared with PCP.The surface of lactic acid bacteria powder with PCP-1 was denser by observed with scanning electron microscope.Furthermore, the activities of Na+-K+-ATPase and lactate dehydrogenase of compound lactic acid bacteria were significantly enhanced by adding PCP-1 to the basic protective agent, which increased by 0.66 U/mg prot and 1.46 U/mg prot, respectively.The cell membrane integrity of the compound lactic acid bacteria added with PCP-1 was better maintained after double staining with propidium iodide and fluorescein diacetate.In conclusion, PCP-1 may reduce the freeze-drying damage of compound lactic acid bacteria by forming hydrogen bonds through the existence of hydroxyl groups, and improve the freeze-drying survival rate of compound lactic acid bacteria.

参考文献

[1] SWANSON K S, GIBSON G R, HUTKINS R, et al. The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nature Reviews Gastroenterology & Hepatology, 2020, 17:687-701.
[2] KANDIL S, EL SODA M.Influence of freezing and freeze drying on intracellular enzymatic activity and autolytic properties of some lactic acid bacterial strains[J].Advances in Microbiology, 2015, 5(6):371-382.
[3] TYMCZYSZYN E E, SOSA N, GERBINO E, et al.Effect of physical properties on the stability of Lactobacillus bulgaricus in a freeze-dried galacto-oligosaccharides matrix[J].International Journal of Food Microbiology, 2012, 155(3):217-221.
[4] DA SILVA GUEDES J, PIMENTEL T C, DINIZ-SILVA H T, et al.Protective effects of β-glucan extracted from spent brewer yeast during freeze-drying, storage and exposure to simulated gastrointestinal conditions of probiotic Lactobacilli[J].LWT, 2019, 116:108496.
[5] ÜÇOK G, SERT D.Trial productions of freeze-dried Lactobacillus plantarum culture using dairy by-products as cryoprotectants:Viability and characterization of cultures[J].Food Bioscience, 2022, 46:101541.
[6] 寇佳祥, 乔建军, 朱宏吉, 等.提高乳杆菌属冷冻干燥存活率研究进展[J].食品与发酵工业, 2022, 48(13):296-303.
KOU J X, QIAO J J, ZHU H J, et al.Research progress on improving the survival rate of Lactobacillus in freeze-drying[J].Food and Fermentation Industries, 2022, 48(13):296-303.
[7] 于小青. 植物乳杆菌在冷冻干燥过程中生理损伤及保护策略的研究[D].上海:上海理工大学, 2019.
YU X Q.Study on physiological damage and protection strategy of Lactobacillus plantarum during freeze-drying[D].Shanghai:University of Shanghai for Science & Technology, 2019.
[8] 于焕. 益生菌发酵工艺、冻干保护剂优化与活性研究[D].沈阳:辽宁大学, 2017.
YU H. Optimization of probiotic fermentation technology, freeze-drying protector and activity study. Shenyang: Liaoning University, 2017.
[9] WANG W L, TAN J Q, NIMA L M, et al.Polysaccharides from fungi:A review on their extraction, purification, structural features, and biological activities[J].Food Chemistry:X, 2022, 15:100414.
[10] 许艺娴, 周禹慧, 马小清, 等.提取方法对真菌多糖得率及结构特征影响研究进展[J].食品与发酵工业, 2022, 48(5):289-301.
XU Y X, ZHOU Y H, MA X Q, et al.Research progress in the effect of extraction methods on the yield and structural characteristics of fungal polysaccharides[J].Food and Fermentation Industries, 2022, 48(5):289-301.
[11] LI H P, ZHAO P, ZHANG S H, et al.Protective effect of polysaccharides from Pholiota nameko on Lactobacillus casei ATCC 334 subjected to freeze-drying[J].LWT, 2019, 115:108463.
[12] 李兵兵, 龙慧, 伍恩慧, 等.银耳多糖对冻干植物乳杆菌细胞膜及糖代谢酶的保护作用[J].现代食品科技, 2021, 37(11):85-95.
LI B B, LONG H, WU E H, et al.Protective effects of polysaccharides extracted from Tremella on cell membrane and sugar metabolism enzymes of freeze-dried Lactobacillus plantarum[J].Modern Food Science and Technology, 2021, 37(11):85-95.
[13] 刘飞, 张艳艳, 张金华, 等.普鲁兰多糖作为冻干保护剂对乳酸菌的影响[J].药物生物技术, 2020, 27(6):501-505.
LIU F, ZHANG Y Y, ZHANG J H, et al.Effects of pullulan as cryoprotectant on lactic acid bacteria[J].Pharmaceutical Biotechnology, 2020, 27(6):501-505.
[14] XU T R, ZHANG H M, WANG S G, et al.A review on the advances in the extraction methods and structure elucidation of Poria cocos polysaccharide and its pharmacological activities and drug carrier applications[J].International Journal of Biological Macromolecules, 2022, 217:536-551.
[15] 孙明杰, 张越, 姚亮, 等.茯苓多糖的分离纯化、组成及其抗氧化活性研究[J].安徽中医药大学学报, 2022, 41(1):86-91.
SUN M J, ZHANG Y, YAO L, et al.Isolation, purification, composition and antioxidant activity of Poria cocos polysaccharides[J].Journal of Anhui University of Chinese Medicine, 2022, 41(1):86-91.
[16] CHENG Y, XIE Y, GE J C, et al.Structural characterization and hepatoprotective activity of a galactoglucan from Poria cocos[J].Carbohydrate Polymers, 2021, 263:117979.
[17] ZHANG W X, CHEN L, LI P, et al.Antidepressant and immunosuppressive activities of two polysaccharides from Poria cocos (Schw.) Wolf[J].International Journal of Biological Macromolecules, 2018, 120:1696-1704.
[18] 陈树俊, 崔云.甘薯渣多糖提取、分离纯化及抗氧化活性研究[J].中国粮油学报, 2020, 35(10):56-62.
CHEN S J, CUI Y.Extraction, purification and antioxidant activity of polysaccharides from sweet potato residue[J].Journal of the Chinese Cereals and Oils Association, 2020, 35(10):56-62.
[19] WANG Y L, HAN J, YUE Y, et al.Purification, structure identification and immune activity of a neutral polysaccharide from Cynanchum Auriculatum[J].International Journal of Biological Macromolecules, 2023, 237:124142.
[20] FAN H T, SUN M, LI J, et al.Structure characterization and immunomodulatory activity of a polysaccharide from Saposhnikoviae Radix[J].International Journal of Biological Macromolecules, 2023, 233:123502.
[21] LIU G R, KAMILIJIANG M, ABUDUWAILI A, et al.Isolation, structure elucidation, and biological activity of polysaccharides from Saussurea involucrata[J].International Journal of Biological Macromolecules, 2022, 222:154-166.
[22] 叶美芝, 伍紫仪, 吴金松, 等.山药皮多糖的分离纯化、结构特征及体外抗氧化活性研究[J].食品工业科技, 2023, 44(19):78-85.
YE M Z, WU Z Y, WU J S, et al.Study on separation, purification, structural characteristics and in vitro antioxidant activity of polysaccharides from Chinese yam peel[J].Science and Technology of Food Industry, 2023, 44(19):78-85.
[23] MA R J, CAO T Q, AN H X, et al.Extraction, purification, structure, and antioxidant activity of polysaccharide from Rhodiola rosea[J].Journal of Molecular Structure, 2023, 1283:135310.
[24] 李凤娟. 植物乳杆菌WL-R-02冻干保护剂配方的优化[J].广东饲料, 2022, 31(4):34-37.
LI F J. Optimization of formula of freeze-drying protective agent for Lactobacillus plantarum WL-R-02. Guangdong Feed, 2022, 31(4):34-37.
[25] KHODAEI D, HAMIDI-ESFAHANI Z, LACROIX M.Gelatin and low methoxyl pectin films containing probiotics:Film characterization and cell viability[J].Food Bioscience, 2020, 36(8):100660.
[26] WANG G Q, PU J, DONG C, et al.Effect of oleic acid on the viability of different freeze-dried Lactiplantibacillus plantarum strains[J].Journal of Dairy Science, 2021, 104(11):11457-11465.
[27] BIAN C, XIE N N, CHEN F S.Preparation of bioactive water-soluble pachyman hydrolyzed from sclerotial polysaccharides of Poria cocos by hydrolase[J].Polymer Journal, 2010, 42(3):256-260.
[28] 任艳, 陈明, 邵玉宇, 等.真空冷冻干燥过程中保护剂对乳酸菌的保护机理[J].中国乳品工业, 2013, 41(9):41-45.
REN Y, CHEN M, SHAO Y Y, et al.Influence of protectants on the survival of lactic acid bacteria during the vacuum freeze-drying process[J].China Dairy Industry, 2013, 41(9):41-45.
[29] 王岩, 冯万宇, 刘宇, 等.保护剂在益生菌保藏过程中的应用[J].中国草食动物科学, 2015, 35(3):52-54;67.
WANG Y, FENG W Y, LIU Y, et al.Application of protector in the preservation of probiotics[J].China Herbivore Science, 2015, 35(3):52-54;67.
[30] LI B K, TIAN F W, LIU X M, et al.Effects of cryoprotectants on viability of Lactobacillus reuteri CICC6226[J].Applied Microbiology and Biotechnology, 2011, 92(3):609-616.
[31] CHENG Z Y, YAN X, WU J Y, et al.Effects of freeze drying in complex lyoprotectants on the survival, and membrane fatty acid composition of Lactobacillus plantarum L1 and Lactobacillus fermentum L2[J].Cryobiology, 2022, 105:1-9.
[32] CHEN B Y, WANG X Y, LI P Z, et al.Exploring the protective effects of freeze-dried Lactobacillus rhamnosus under optimized cryoprotectants formulation[J].LWT, 2023, 173:114295.
文章导航

/