研究报告

枯草芽孢杆菌BSNK-5发酵豆乳营养组分的动态变化规律研究

  • 高雅鑫 ,
  • 胡淼 ,
  • 文伟 ,
  • 范蓓 ,
  • 李淑英 ,
  • 王凤忠
展开
  • 1(中国农业科学院农产品加工研究所,北京,100193)
    2(中国农业科学院,农业农村部农产品加工综合性重点实验室,北京,100193)
第一作者:博士研究生(王凤忠研究员和李淑英副研究员为共同通信作者,E-mail:wangfengzhong@caas.cn;lishuying@caas.cn)

收稿日期: 2023-11-26

  修回日期: 2024-01-11

  网络出版日期: 2024-12-17

基金资助

大豆产业体系(CARS-04);国家重点研发计划-中国和欧盟政府间科技合作项目(2023YFE0104900-3-2)

Study on dynamic change of nutritional components of Bacillus subtilis BSNK-5 fermented soymilk

  • GAO Yaxin ,
  • HU Miao ,
  • WEN Wei ,
  • FAN Bei ,
  • LI Shuying ,
  • WANG Fengzhong
Expand
  • 1(Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China)
    2(Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China)

Received date: 2023-11-26

  Revised date: 2024-01-11

  Online published: 2024-12-17

摘要

为开发具有健康功效的新型优质蛋白产品,该文利用枯草芽孢杆菌(Bacillus subtilis)BSNK-5发酵豆乳,动态分析了发酵过程中豆乳各营养组分的变化规律。结果显示,B.subtilis BSNK-5在豆乳基质中生长旺盛,呈指数级增长;发酵至84 h时,粗蛋白下降了23.50%,生成了多肽和氨基酸等小分子产物,发酵后期由于氨基酸的过度降解导致水解氨基酸含量下降了42.90%;在氨基酸组成上,必需氨基酸含量占比提高了13.34%,蛋氨酸和赖氨酸含量分别提高了106.90%和18.50%,表明B.subtilis BSNK-5的发酵平衡了豆乳氨基酸的组成和比例。发酵过程中,脂肪含量增加,脂肪酸含量峰值出现在24 h,其中亚油酸占比达到49.28%;大豆异黄酮明显由糖苷型转变为苷元型,苷元型异黄酮含量峰值出现在48 h,以大豆苷转化率最高,大豆素占比约为52.15%。综上,B.subtilis BSNK-5的发酵有效促使了豆乳营养价值和生物利用度的提高,而发酵时间直接影响了各营养组分的富集。该研究结果为豆乳品质控制、功能性发酵豆制品开发、植物蛋白资源补充提供理论依据。

本文引用格式

高雅鑫 , 胡淼 , 文伟 , 范蓓 , 李淑英 , 王凤忠 . 枯草芽孢杆菌BSNK-5发酵豆乳营养组分的动态变化规律研究[J]. 食品与发酵工业, 2024 , 50(22) : 143 -149 . DOI: 10.13995/j.cnki.11-1802/ts.038071

Abstract

To develop new high-quality plant protein products with health benefits, this study dynamically analyzed the alteration of nutritional components of soymilk during the fermentation process with Bacillus subtilis BSNK-5.These results indicated that B. subtilis BSNK-5 grew vigorously in the substrate of soymilk with an exponential growth trend.After 84 h fermentation, the crude protein content decreased by 23.50%, generating small molecules such as peptides and amino acids, but the total content of hydrolyzed amino acids decreased by 42.90% due to the excessive degradation of amino acids in the later fermentation.In terms of amino acid composition, the percentage of essential amino acids increased by 13.34%, and the content of methionine and lysine increased by 106.90% and 18.50%, respectively, indicating that B. subtilis BSNK-5 fermentation balanced the composition and proportion of amino acids in soymilk.During the fermentation process, the fat content increased, and the content of fatty acids peaked at 24 h fermentation, in which linoleic acid accounted for 49.28%.In addition, the conformation of soybean isoflavones was obviously transformed from glucosides into their corresponding aglycones, and the content of isoflavone aglycones peaked at 48 h fermentation.The conversion rate of daidzin was the highest, and the proportion of daidzein reached about 52.15%.Therefore, B. subtilis BSNK-5 fermentation effectively contributed to the improvement of the nutritional value and the bioavailability of soymilk, whereas the fermentation time directly affected the enrichment of each nutrient component.These results provided a theoretical basis for the control of soymilk quality, the development of functional fermented soybean products and the supplementation of plant protein resources.

参考文献

[1] HOEHNEL A, ZANNINI E,ARENDT E K.Targeted formulation of plant-based protein-foods:Supporting the food system's transformation in the context of human health, environmental sustainability and consumer trends[J].Trends in Food Science &Technology, 2022, 128:238-252.
[2] MADJIREBAYE P, PENG F, HUANG T, et al.Effects of fermentation conditions on bioactive substances in lactic acid bacteria-fermented soymilk and its storage stability assessment[J].Food Bioscience, 2022, 50:102207.
[3] CUI J W, XIA P B, ZHANG L L, et al.A novel fermented soybean, inoculated with selected Bacillus, Lactobacillus and Hansenula strains, showed strong antioxidant and anti-fatigue potential activity[J].Food Chemistry, 2020, 333:127527.
[4] LUO H, BAO Y H, ZHU P.Nutritional and functional insight into novel probiotic lycopene-soy milk by genome edited Bacillus subtilis[J].Food Chemistry, 2023, 429:136973.
[5] WANG J, HUANG Z Y, JIANG Q J, et al.Fungal solid-state fermentation of crops and their by-products to obtain protein resources:The next frontier of food industry[J].Trends in Food Science & Technology, 2023, 138:628-644.
[6] ZWINKELS J, WOLKERS-ROOIJACKERS J, SMID E J.Solid-state fungal fermentation transforms low-quality plant-based foods into products with improved protein quality[J].LWT, 2023, 184:114979.
[7] XIA Y A, ZHA M S, FENG C C, et al.Effect of a co-fermentation system with high-GABA-yielding strains on soymilk properties:Microbiological, physicochemical, and aromatic characterisations[J].Food Chemistry, 2023, 423:136245.
[8] 钟杰. 枯草芽孢杆菌酱(豉)香风味基因的筛选及功能验证[D].贵州:贵州大学, 2019.
ZHONG J.Screening and functional research on the flavor genes about lobster or soya sauce of Bacillus subtilis[D].Guizhou:Guizhou University, 2019.
[9] JAYACHANDRAN M, XU B J.An insight into the health benefits of fermented soy products[J].Food Chemistry, 2019, 271:362-371.
[10] 杨艳莉, 吴雪玲, 余知和.纳豆及纳豆芽孢杆菌研究进展[J].中国调味品, 2022, 47(5):201-205.
YANG Y L, WU X L, YU Z H.Research progress on natto and Bacillus subtilis natto[J].China Condiment, 2022, 47(5):201-205.
[11] LI W, WANG T.Effect of solid-state fermentation with Bacillus subtilis lwo on the proteolysis and the antioxidative properties of chickpeas[J].International Journal of Food Microbiology, 2021, 338:108988.
[12] HOSOTANI Y, NOVIYANTI F, KOSEKI S, et al.Growth delay analysis of high-salt injured Escherichia coli O157:H7 in fermented soybean paste by real-time PCR and comparison of this method with other estimation methods[J].LWT, 2018, 96:426-431.
[13] KUMARI M, PATEL H K, KOKKILIGADDA A, et al.Characterization of probiotic lactobacilli and development of fermented soymilk with improved technological properties[J].LWT, 2022, 154:112827.
[14] AFIFAH D N, HARTONO A F, ASTUTI A T, et al.The addition of soy milk to pineapple chellies as a complementary alternative to nutritious snacks for children[J].International Journal of Gastronomy and Food Science, 2022, 29:100571.
[15] 倪楠, 辛志宏, 许斌, 等.纳豆激酶豆乳液体发酵条件优化[J].生物技术通报, 2019, 35(10):212-219.
NI N, XIN Z H, XU B, et al.Optimization of liquid fermentation conditions for soybean milk with nattokinase[J].Biotechnology Bulletin, 2019, 35(10):212-219.
[16] 李淑英, 聂莹, 杜欢, 等.60Co-γ射线辐照诱变筛选纳豆激酶高活耐热菌株[J].核农学报, 2013, 27(6):782-785.
LI S Y, NIE Y, DU H, et al.Screening of strains with the high activity and thermostability nattokinase by 60Co-γray irradiation[J].Journal of Nuclear Agricultural Sciences, 2013, 27(6):782-785.
[17] 刘战霞, 李文琦, 杨慧, 等.益生菌发酵南瓜籽工艺优化及产氨基酸和挥发性香气成分分析[J].食品研究与开发, 2023, 44(17):118-125.
LIU Z X, LI W Q, YANG H, et al.Process optimization and content of amino acids and volatile flavor components in the fermentation of pumpkin seeds with compound probiotics[J].Food Research and Development, 2023, 44(17):118-125.
[18] 安馨, 鱼晓敏, 李层层, 等.鹰嘴豆蛋白质的营养学评价[J].食品科技, 2018, 43(6):83-87.
AN X, YU X M, LI C C, et al.Nutritional evaluation on chickpea protein[J].Food Science and Technology, 2018, 43(6):83-87.
[19] 李金华, 李博.我国3种杂豆的蛋白质营养综合评价[J].食品科技, 2021, 46(1):172-177.
LI J H, LI B.Comprehensive evaluation of protein nutrition in three kinds of legume seeds in China[J].Food Science and Technology, 2021, 46(1):172-177.
[20] 崔子雨, 孔娜, 刘伟. 溶剂萃取脱除大豆油中游离脂肪酸的研究[J]. 中国油脂, 2024, 49(8):41-47; 91.
CUI Z Y, KONG N, LIU W. Removal of free fatty acid from soybean oil by solvent extraction[J]. China Oils and Fats, 2024, 49(8):41-47; 91.
[21] 黄玉军, 周帆, 于俊娟, 等.高转化大豆异黄酮乳酸菌的筛选及在豆乳中的发酵特性[J].食品研究与开发, 2021, 42(3):157-162.
HUANG Y J, ZHOU F, YU J J, et al.Screening of lactic acid bacteria with high conversion of soybean isoflavones and fermentation characteristics in soybean milk[J].Food Research and Development, 2021, 42(3):157-162.
[22] BATKOWSKA J, DRABIK K, BRODACKI A, et al.Fatty acids profile, cholesterol level and quality of table eggs from hens fed with the addition of linseed and soybean oil[J].Food Chemistry, 2021, 334:127612.
[23] KHAN A, LI S Q, HAN H W, et al.A gluten degrading probiotic Bacillus subtilis LZU-GM relieve adverse effect of gluten additive food and balances gut microbiota in mice[J].Food Research International, 2023, 170:112960.
[24] SINGH B P, YADAV D, VIJ S. Soybean bioactive molecules: Current trend and future prospective[M]. Reference Series in Phytochemistry. Cham: Springer International Publishing, 2019:267-294.
[25] 杨彩艳. 液态发酵豆粕制备大豆肽发酵条件的优化[D].济南:山东轻工业学院, 2010.
YANG C Y.Optimum consitions for preparation of soybean peptides by liquid state fermentation[D].Jinan:Shangdong Institute of Industry, 2010.
[26] KEONG L Y E, TOH M, LU Y Y, et al.Biotransformation of okara (soybean residue) through solid-state fermentation using probiotic Bacillus subtilis and Bacillus coagulans[J].Food Bioscience, 2023, 55:103056.
[27] DIOMANDÉ S E, NGUYEN-THE C, GUINEBRETIÈRE M H, et al.Role of fatty acids in Bacillus environmental adaptation[J].Frontiers in Microbiology, 2015, 6:813-833.
[28] 宋睿, 邓源喜. 大豆制品的营养价值及其开发利用[J]. 安徽农学通报, 2018, 24(12): 112-114.
SONG R, DENG Y X. Advancement of health function of soybean products and its exploitation and utilization[J]. Anhui Agricultural Science Bulletin, 2018, 24(12): 112-114.
[29] CHEN H J, MCGOWAN E M, REN N A, et al.Nattokinase:A promising alternative in prevention and treatment of cardiovascular diseases[J].Biomarker Insights, 2018, 13:1177271918785130.
[30] DAI S H, PAN M F, EL-NEZAMI H S, et al.Effects of lactic acid bacteria-fermented soymilk on isoflavone metabolites and short-chain fatty acids excretion and their modulating effects on gut microbiota[J].Journal of Food Science, 2019, 84(7):1854-1863.
文章导航

/