分析与检测

基于稳定氢同位素特征的天然番茄红素鉴别研究

  • 罗静仪 ,
  • 武竹英 ,
  • 冯迪 ,
  • 王道兵 ,
  • 符艳美 ,
  • 安红梅 ,
  • 杨清山 ,
  • 刘洋 ,
  • 岳红卫 ,
  • 钟其顶 ,
  • 谢周杰
展开
  • 1(天津科技大学 生物工程学院,天津,300457)
    2(国家市场监管技术创新中心(轻工消费品质量安全),北京,100015)
    3(中轻技术创新中心有限公司,北京,100015)
    4(河北晨光检测技术服务有限公司,河北 邯郸,300138)
第一作者:硕士研究生(钟其顶正高级工程师与王道兵正高级工程师为共同通信作者,E-mail:zhongqingding@163.com;wangdaobing111@163.com)

收稿日期: 2024-03-05

  修回日期: 2024-05-15

  网络出版日期: 2024-12-17

基金资助

中国轻工集科技创新基金项目(ZQ2022JC-JY03)

Identification of natural lycopene based on hydrogen isotope characterization

  • LUO Jingyi ,
  • WU Zhuying ,
  • FENG Di ,
  • WANG Daobing ,
  • FU Yanmei ,
  • AN Hongmei ,
  • YANG Qingshan ,
  • LIU Yang ,
  • YUE Hongwei ,
  • ZHONG Qiding ,
  • XIE Zhoujie
Expand
  • 1(College of Biological Engineering,Tianjin University of Science and Technology, Tianjin 300457, China)
    2(Technology Innovation Center of Light Industrial Consumer Goods Quality and Safety for State Market Regulation, Beijing 100015, China)
    3(Sinolight Technology Innovation Centre Co.Ltd., Beijing 100015, China)
    4(Hebei Chenguang Detection Technology Service Co.Ltd., Handan 300138, China)

Received date: 2024-03-05

  Revised date: 2024-05-15

  Online published: 2024-12-17

摘要

为了研究稳定氢同位素在番茄红素掺假检测领域的应用可行性,该研究利用高温裂解元素分析-稳定同位素比值质谱联用技术建立了测定不同来源番茄红素稳定氢同位素的方法。经验证,前处理后番茄红素样品纯度≥94.14%,前处理过程不会改变番茄红素氢稳定同位素比值的测定;该方法δ2H值重复性标准偏差为1.99‰,再现性标准偏差小于3‰。对13种番茄红素原料及番茄红素标准品的稳定氢同位素比值进行测定,人工合成的番茄红素δ2H值为-29.21‰~-56.22‰,天然来源的番茄红素δ2H值为-225.76‰~-256.98‰,发酵来源的番茄红素δ2H值为-81.35‰~-141.24‰。三者稳定氢同位素比值具有明显差异,该方法可以用于不同来源的番茄红素的鉴别。

本文引用格式

罗静仪 , 武竹英 , 冯迪 , 王道兵 , 符艳美 , 安红梅 , 杨清山 , 刘洋 , 岳红卫 , 钟其顶 , 谢周杰 . 基于稳定氢同位素特征的天然番茄红素鉴别研究[J]. 食品与发酵工业, 2024 , 50(22) : 334 -338 . DOI: 10.13995/j.cnki.11-1802/ts.039088

Abstract

This study aimed to investigate the feasibility of the application of stable hydrogen isotopes in the field of lycopene adulteration detection.The method using the technique of temperature conversion/elementary analyzer-stable isotope ratio mass spectrometers (TC/EA-IRMS) was developed for the determination of stable hydrogen isotopes of lycopene from different sources.It was verified that the purity of lycopene samples was ≥94.14% after pretreatment, and the pretreatment process would not change the determination of lycopene hydrogen stable isotope ratio.The standard deviation of the δ2H value of the method was 1.99‰ for repeatability and the standard deviation of the reproducibility was less than 3‰.The stable hydrogen isotope ratios of 13 lycopene raw materials and lycopene standards were determined, the δ2H values of the synthetic lycopene ranged from -29.21‰--56.22‰, the δ2H values of the lycopene from natural sources ranged from -225.76 ‰--256.98 ‰, and the δ2H values of the lycopene from fermentation sources ranged from -81.35 ‰--141.24 ‰.The stabilized hydrogen isotope ratios of the three are significantly different, and the method can be used for the identification of lycopene from different sources.

参考文献

[1] WEI R R, LIN Q Y, ADU M, et al. The sources, properties, extraction, biosynthesis, pharmacology, and application of lycopene[J]. Food & Function, 2023, 14(22):9974-9998.
[2] JIANG Z Z, CHEN H L, LI M, et al. Associations between colorectal cancer risk and dietary intake of tomato, tomato products, and lycopene: Evidence from a prospective study of 101, 680 US adults[J]. Frontiers in Oncology, 2023, 13:1220270.
[3] DUAN X Y, XIE C D, HILL D R A, et al. Bioaccessibility, bioavailability and bioactivities of carotenoids in microalgae: A review[J]. Food Reviews International, 2024, 40(1):230-259.
[4] CASEIRO M, ASCENSO A, COSTA A, et al. Lycopene in human health[J]. LWT-Food Science and Technology, 2020, 127: 109323.
[5] 乔强. 番茄红素保健功能研究及其应用进展[J]. 现代食品, 2022, 28(13):20-22.
QIAO Q. Research progress of lycopene’s health-care function and its application[J]. Modern Food, 2022, 28(13):20-22.
[6] ASHRAF W, LATIF A, ZHANG L F, et al. Technological advancement in the processing of lycopene: A review[J]. Food Reviews International, 2022, 38(5):857-883.
[7] 张丽靖, 杨郁. 微生物发酵生产番茄红素的研究进展[J]. 生物技术通报, 2006, 22(4):59-60, 66.
ZHANG L J, YANG Y. The study on lycopene produced by microorganisms[J]. Biotechnology Bulletin, 2006, 22(4):59-60; 66.
[8] NANOU K, ROUKAS T, PAPADAKIS E. Improved production of carotenes from synthetic medium by Blakeslea trispora in a bubble column reactor[J]. Biochemical Engineering Journal, 2012, 67:203-207.
[9] LÓPEZ-NIETO M J, COSTA J, PEIRO E, et al. Biotechnological lycopene production by mated fermentation of Blakeslea trispora[J]. Applied Microbiology and Biotechnology, 2004, 66(2):153-159.
[10] SHI B, MA T, YE Z L, et al. Systematic metabolic engineering of Saccharomyces cerevisiae for lycopene overproduction[J]. Journal of Agricultural and Food Chemistry, 2019, 67(40):11148-11157.
[11] 解书怀. 三孢布拉霉发酵番茄红素工艺的研究[D]. 无锡: 江南大学, 2008.
XIE S H. Study on the fermentation technology of lycopene by Blakeslea trispora[D]. Wuxi: Jiangnan University, 2008.
[12] 丁长河, 樊俊敏, 尹萌, 等. 响应面法优化三孢布拉氏霉菌发酵产番茄红素工艺[J]. 中国调味品, 2024, 49(2):102-109.
DING C H, FAN J M, YIN M, et al. Optimization of lycopene produced by fermentation of Blakeslea trispora by response surface method[J]. China Condiment, 2024, 49(2):102-109.
[13] 张希波, 刘洪海, 张晓丽, 等. 番茄红素化学合成的研究进展[J]. 西北药学杂志, 2009, 24(1):78-80.
ZHANG X B, LIU H H, ZHANG X L, et al. Progress on chemical synthesis of lycopene[J]. Northwest Pharmaceutical Journal, 2009, 24(1):78-80.
[14] 刘沐霖, 惠伯棣, 庞善春. 番茄红素人工合成品与天然产物的鉴定[J]. 食品科学, 2007, 28(9):462-466.
LIU M L, HUI B D, PANG S C. Identification of synthetic compound and natural product of lycopene[J]. Food Science, 2007, 28(9):462-466.
[15] 张红艳, 石凯欣, 潘思轶. 番茄红素异构化研究进展[J]. 食品科学, 2023, 44(19):330-339.
ZHANG H Y, SHI K X, PAN S Y. Research progress on lycopene isomerization[J]. Food Science, 2023, 44(19):330-339.
[16] ZHANG L J, KUJAWINSKI D M, FEDERHERR E, et al. Caffeine in your drink: Natural or synthetic?[J]. Analytical Chemistry, 2012, 84(6):2805-2810.
[17] 徐园若, 母健, 刘晓涵, 等. 稳定同位素技术在禽类及其制品溯源领域的研究进展[J]. 食品工业科技, 2022, 43(6):410-419.
XU Y R, MU J, LIU X H, et al. Research progress of stable isotope technology in traceability of poultry and its products[J]. Science and Technology of Food Industry, 2022, 43(6):410-419.
[18] KROLL H, FRIEDRICH J, MENZEL M, et al. Carbon and hydrogen stable isotope ratios of carotenoids and β-carotene-based dietary supplements[J]. Journal of Agricultural and Food Chemistry, 2008, 56(11):4198-4204.
[19] 刘清毅, 李全发, 周剑, 等. 黄豆黄素纯度标准物质研制[J]. 化学分析计量, 2023, 32(6): 1-6.
LIU Q Y , LI Q F , ZHOU J , et al. Development of glycitein purity reference material[J]. Chemical Analysis and Meterage, 2023, 32(6): 1-6.
[20] PERINI M, GAGGIOTTI A, PIANEZZE S, et al. Stable isotope ratio analysis for authentication of natural antioxidant cannabidiol (CBD) from Cannabis sativa[J]. Antioxidants, 2023, 12(7):1421.
[21] CULP R A, NOAKES J E. Determination of synthetic components in flavors by deuterium/hydrogen isotopic ratios[J]. Journal of Agricultural and Food Chemistry, 1992, 40(10):1892-1897.
[22] 喻龙, 何峻岭, 艾书涛, 等. 新疆铁门关市域地下水氢氧稳定同位素特征分析[J]. 干旱区资源与环境, 2023, 37(1):58-64.
YU L, HE J L, AI S T, et al. Characteristics of hydrogen and oxygen stable isotopes in groundwater of Tiemenguan city, Xinjiang[J]. Journal of Arid Land Resources and Environment, 2023, 37(1):58-64.
[23] CAJA M D, PRESTON C, KEMPF M, et al. Flavor authentication studies of alpha-ionone, beta-ionone, and alpha-ionol from various sources[J]. Journal of Agricultural and Food Chemistry, 2007, 55(16):6700-6704.
[24] ZHANG B L, YUNIANTA, VALLET C, et al. Natural abundance isotopic fractionation in the fermentation reaction: Influence of the fermentation medium[J]. Bioorganic Chemistry,1997,25(2):117-129.
文章导航

/