实现高密度发酵和高产孢率是当前丁酸梭菌发酵面临的重要挑战,为了解决这一问题,该研究通过单因素和响应面试验并结合分段pH调控策略优化了丁酸梭菌发酵条件及产孢条件。结果表明,丁酸梭菌三角瓶规模发酵培养基最佳组成为:10.34 g/L可溶性淀粉、30.96 g/L酵母浸粉、5.12 g/L磷酸氢二钾、4.00 g/L乙酸钠、0.50 g/L半胱氨酸盐酸盐、0.80 g/L氯化钙、0.60 g/L硫酸镁、0.20 g/L硫酸锰;最佳发酵条件为:温度37 ℃、接种量1%、初始pH 7.0。5 L发酵罐发酵实验发现,当pH值维持在5.5时,菌体量达到最大水平,而产孢最适pH值为6.0。因此采用分阶段pH调控策略,待培养基初始pH值由7.0降低至5.5,通过流加氨水保持该pH至菌体进入稳定期,随后将pH值调至6.0维持到发酵结束。该策略下,5 L发酵罐37 ℃培养20 h的丁酸梭菌菌体量达到最大,为3.3×109个/mL,比优化前提高了3.23倍,产孢率达到90%以上。
Achieving high-density fermentation and increased sporulation rates are critical challenges in the fermentation of Clostridium butyricum.To address this issue, the present study optimized the fermentation and sporulation conditions of C.butyricum through single factor and response surface experiments, combined with a segmented pH control strategy.Results indicated that the optimal composition of the C.butyricum triangular flask scale fermentation medium was as follows:10.34 g/L of soluble starch, 30.96 g/L of yeast extract, 5.12 g/L of dipotassium hydrogen phosphate, 4.00 g/L of sodium acetate, 0.50 g/L of cysteine hydrochloride, 0.80 g/L of calcium chloride, 0.60 g/L of magnesium sulfate, and 0.20 g/L of manganese sulfate.The optimal fermentation conditions included a temperature of 37 ℃, an initial pH of 7.0, and an inoculum of 1%.The experiment conducted on the 5 L fermentation tank showed that the maximum biomass level was achieved when the pH was maintained at 5.5.On the other hand, the optimal pH for sporulation was found to be 6.0.Therefore, a staged pH control strategy was employed.As the pH was decreased from an initial 7.0 to 5.5, ammonia solution was continuously added to maintain the pH level at 5.5 until the microbial culture entered the stable phase.The pH was then adjusted to 6.0 and maintained until the fermentation process was completed.Following this strategy, the biomass of C.butyricum cultured in a 5 L fermentation tank at 37 ℃ for 20 h, reached its maximum level of 3.3×109 cells/mL, which was 3.23 times higher than that before optimization, with a sporulation rate of over 90%.
[1] 梁丽潇, 叶金云, 李爱科, 等.丁酸梭菌的特性及其在水产动物中的应用研究进展[J].中国饲料, 2023(19):87-95.
LIANG L X, YE J Y, LI A K, et al.Progress on the characteristics of Clostridium butyricum and its application in aquatic animals[J].China Feed, 2023(19):87-95.
[2] 陈俊超, 附俊杰, 刘军, 等.丁酸梭菌的益生特性及其活性代谢产物[J].食品研究与开发,2023, 44 (23):145-152.
CHEN J C, FU J J, LIU J, et al.Probiotic characteristics and active metabolites of Clostridium butyricum[J].Food Research and Development,2023, 44 (23):145-152.
[3] LIU M, UYANGA V A, CAO X K, et al.Regulatory effects of the probiotic Clostridium butyricum on gut microbes, intestinal health, and growth performance of chickens[J].The Journal of Poultry Science, 2023, 60(2):2023011.
[4] STOEVA M K, GARCIA-SO J, JUSTICE N, et al.Butyrate-producing human gut symbiont, Clostridium butyricum, and its role in health and disease[J].Gut Microbes, 2021, 13(1):1-28.
[5] WYDAU-DEMATTEIS S, LOUIS M, ZAHR N, et al.The functional dlt operon of Clostridium butyricum controls the D-alanylation of cell wall components and influences cell septation and vancomycin-induced lysis[J].Anaerobe, 2015, 35(Pt B):105-114.
[6] ZOU W, YE G B, ZHANG K Z, et al.Analysis of the core genome and pangenome of Clostridium butyricum[J].Genome, 2021, 64(1):51-61.
[7] CAI L Y, HARTANTO R, ZHANG J, et al.Clostridium butyricum improves rumen fermentation and growth performance of heat-stressed goats in vitro and in vivo[J].Animals (Basel), 2021, 11(11):3261.
[8] 吴天福, 谢小林, 陈美标, 等.丁酸梭菌厌氧发酵机制及高密度厌氧发酵方式研究进展[J].食品与机械, 2020, 36(1):222-229.
WU T F, XIE X L, CHEN M B, et al.Research progress on anaerobic fermentation mechanism and high-density anaerobic fermentation of Clostridium butyrate [J].Food and Machinery, 2020, 36(1):222-229.
[9] 刘宇琴, 董云鹏, 蔡俊.丁酸梭菌发酵培养基优化研究[J].饲料研究, 2023, 46(3):71-77.
LIU Y Q, DONG Y P, CAI J.Optimization of fermentation medium for Clostridium butyricum[J].Feed Research, 2023, 46(3):71-77.
[10] 朱曦, 李英俊, 梅余霞, 等.丁酸梭菌MY-Z高密度发酵培养基及发酵工艺的优化[J].养殖与饲料, 2022, 21(11):21-27.
ZHU X, LI Y J, MEI Y X, et al.Optimization of high density fermentation medium and fermentation process of Clostridium butyricum MY-Z[J].Animals Breeding and Feed, 2022, 21(11):21-27.
[11] FROSSARD A, HAMMES F, GESSNER M O.Flow cytometric assessment of bacterial abundance in soils, sediments and sludge[J].Frontiers in Microbiology, 2016, 7:903.
[12] 胥聆铭, 朱莉, 詹晓北, 等.蜡样芽孢杆菌高密度发酵条件与过程的优化[J].食品与生物技术学报, 2023, 42(8):46-53.
XU L M, ZHU L, ZHAN X B, et al.Optimization of high cell density fermentation conditions and process of Bacillus cereus[J].Journal of Food Science and Biotechnology, 2023, 42(8):46-53.
[13] MOHAMMED S, BEHERA H T, DEKEBO A, et al.Optimization of the culture conditions for production of Polyhydroxyalkanoate and its characterization from a new Bacillus cereus sp.BNPI-92 strain, isolated from plastic waste dumping yard[J].International Journal of Biological Macromolecules, 2020, 156:1064-1080.
[14] ZHAO Y, XU Y F, YU F, et al.Identification of a novel phospholipase D gene and effects of carbon sources on its expression in Bacillus cereus ZY12[J].Journal of Microbiology, 2018, 56(4):264-271.
[15] 邢宏观, 林建国, 钟雪兆, 等.响应面法优化丁酸梭菌发酵培养工艺[J].食品工业科技, 2016, 37(19):237-243.
XING H G, LIN J G, ZHONG X Z,et al.Optimization of fermentation process for Clostridium butyricum using response surface methodology[J].Science and Technology of Food Industry, 2016, 37(19):237-243.
[16] GROOT M N, KLAASSENS E, DE VOS W M, et al.Genome-based in silico detection of putative manganese transport systems in Lactobacillus plantarum and their genetic analysis[J].Microbiology (Reading), 2005, 151(Pt 4):1229-1238.
[17] LENZ C A, VOGEL R F.Effect of sporulation medium and its divalent cation content on the heat and high pressure resistance of Clostridium botulinum type E spores[J].Food Microbiology, 2014, 44:156-167.
[18] 张文芝, 郭坚华.微生物发酵工艺优化研究进展[J].广东农业科学, 2013, 40(6):114-117.
ZHANG W Z, GUO J H.Research advances in microbial fermentation process optimization[J].Guangdong Agricultural Sciences, 2013, 40(6):114-117.
[19] MAI S, WANG G Y, WU P F, et al.Interactions between Bacillus cereus CGMCC 1.895 and Clostridium beijerinckii NCIMB 8052 in coculture for butanol production under nonanaerobic conditions[J].Biotechnology and Applied Biochemistry, 2017, 64(5):719-726.
[20] WOODS D R, JONES D T.Physiological responses of Bacteroides and Clostridium strains to environmental stress factors[J].Advances in Microbial Physiology, 1986, 28:1-64.
[21] 刘瑾, 赵华.响应面法优化丁酸梭菌快速增殖基础培养基[J].中国调味品, 2023, 48(2):65-70.
LIU J, ZHAO H.Optimization of basic medium for Clostridium butyricum rapid proliferation by response surface methodology[J].China Condiment, 2023, 48(2):65-70.
[22] 李妍, 李拖平, 孙勇勇.培养条件对酪酸梭菌增殖生长的影响[J].食品工业科技, 2013, 34(18):217-221.
LI Y, LI T P, SUN Y Y.Effects of cultural conditions on the growth of Clostridium butyricum[J].Science and Technology of Food Industry, 2013, 34(18):217-221.