研究报告

四川泡菜发酵早期亚硝酸盐生成转化途径的初探

  • 范智义 ,
  • 邓维琴 ,
  • 李雄波 ,
  • 张其圣 ,
  • 李婷 ,
  • 陈相杰
展开
  • 1(四川省食品发酵工业研究设计院有限公司,四川 成都,611100)
    2(四川东坡中国泡菜产业技术研究院,四川 眉山,620000)
第一作者:硕士,工程师(陈相杰工程师为通信作者,E-mail:2470409235@qq.com)

收稿日期: 2023-10-10

  修回日期: 2024-02-06

  网络出版日期: 2025-01-23

基金资助

2022年四川省中央引导地方科技发展资金定向转移支付项目;四川省创新团队(蔬菜加工岗位专家)

Preliminary study on producing and transforming of nitrite in early stage of Sichuan paocai fermentation

  • FAN Zhiyi ,
  • DENG Weiqin ,
  • LI Xiongbo ,
  • ZHANG Qisheng ,
  • LI Ting ,
  • CHEN Xiangjie
Expand
  • 1(Sichuan Academy of Food and Fermentation Industries Co.Ltd., Chengdu 611100, China)
    2(Sichuan Dongpo Chinese Pickle Industrial Technological Research Institute, Meishan 620000, China)

Received date: 2023-10-10

  Revised date: 2024-02-06

  Online published: 2025-01-23

摘要

为研究四川泡菜发酵早期亚硝酸盐生成转化机制,测定了白萝卜泡菜发酵前5 d总酸、亚硝酸盐含量,并进行宏基因组学分析。研究发现,泡菜浸渍液总酸由发酵初始(0.03±0.00) g/100 g迅速上升到5 d的(0.74±0.04) g/100 g,亚硝酸盐含量在发酵1 d达到峰值(20.681 mg/L),随后逐渐降至低水平。发酵起始时,体系内以假单胞菌属(Pseudomonas)等杂菌为主,1 d后肠杆菌属(Enterobacter)成为优势微生物,随后乳植物杆菌属(Lactiplantibacillus)增加并占主导。固氮酶(1.18.6.1)、同化硝基氮还原酶(1.7.1.1/1.7.7.2)、异化硝基氮还原酶(1.7.5.1)、亚硝基氮还原酶(1.7.1.15)等亚硝酸盐代谢酶基因在泡菜发酵早期丰度较高。乳植物杆菌属与总酸呈显著正相关,与亚硝酸盐含量呈现负相关,亚硝酸盐代谢相关酶基因与大部分杂菌呈正相关。泡菜中杂菌可能通过1.7.1.1、1.7.7.2、1.7.5.1生成亚硝酸盐,并通过1.7.1.15将其还原为胺,产酸可能是乳酸菌清除亚硝酸盐的主要途径。

本文引用格式

范智义 , 邓维琴 , 李雄波 , 张其圣 , 李婷 , 陈相杰 . 四川泡菜发酵早期亚硝酸盐生成转化途径的初探[J]. 食品与发酵工业, 2025 , 51(1) : 151 -157 . DOI: 10.13995/j.cnki.11-1802/ts.037606

Abstract

To study the production and transformation of nitrite in the early stage of Sichuan paocai fermentation, total acidities and nitrite contents of white radish paocai fermented in the first 5 days were measured and metagenomic analysis was conducted.Results showed that the total acidity of paocai brine rapidly increased from (0.03±0.00) g/100 g in the beginning to (0.74±0.04) g/100 g in the 5th day.Nitrite content rose rapidly, reaching a peak amount (20.681 mg/L) in the first day and gradually decreased to a low level.Pseudomonas and other miscellaneous microbial genera dominated the system before fermentation started, while Enterobacter became the dominant microbe in after one day.Lactiplantibacillus quickly increased and became main genus subsequently.Genes of nitrogenase (1.18.6.1), assimilatory nitrate reductase (1.7.1.1/1.7.7.2), dissimilatory nitrate reductase (1.7.5.1), and nitrite reductase (1.7.1.15) were relatively abundant in the early stage of fermentation.A significant positive correlation was found between Lactiplantibacillus and total acidity and negative correlation was found between Lactiplantibacillus and nitrite content.Genes of nitrogen metabolic enzymes was positively were correlated with most of the miscellaneous microbes.Nitrite might be reduced from nitrate by 1.7.1.1,1.7.7.2 and 1.7.5.1 and reduced further to ammonia by 1.7.1.15 nitrite metabolism might be catalyzed mainly by miscellaneous microbes while lactic acid bacteria scavenge nitrite by producing acid.

参考文献

[1] WANG D D, CHEN G, TANG Y, et al.Effects of temperature on Paocai bacterial succession revealed by culture-dependent and culture-independent methods[J].International Journal of Food Microbiology, 2020, 317:108463.
[2] CHEN A J, LUO W, PENG Y T, et al.Quality and microbial flora changes of radish Paocai during multiple fermentation rounds[J].Food Control, 2019, 106:106733.
[3] WEI W, HU X Y, YANG S, et al.Denitrifying halophilic Archaea derived from salt dominate the degradation of nitrite in salted radish during pickling[J].Food Research International, 2022, 152:110906.
[4] JI F D, JI B P, LI B, et al.Effect of fermentation on nitrate, nitrite and organic acid contents in traditional pickled Chinese cabbage[J].Journal of Food Processing and Preservation, 2009, 33:175-186.
[5] XIA Y J, LIU X F, WANG G Q, et al.Characterization and selection of Lactobacillus brevis starter for nitrite degradation of Chinese pickle[J].Food Control, 2017, 78:126-131.
[6] YAO R L, QIU L N, ZHANG W W, et al.Isolation and characteristics of heterotrophic nitrification-aerobic denitrification bacterium, Bacillus cereus X7 at high salinity[J].Advanced Materials Research, 2013(864-867):111-114.
[7] SONG Q Z, ZHAO F K, WANG B B, et al.Metagenomic insights into Chinese northeast Suancai:Predominance and diversity of genes associated with nitrogen metabolism in traditional household Suancai fermentation[J].Food Research International, 2021, 139:109924.
[8] GERMIDA J J, SICILIANO S D, RENATO DE FREITAS J, et al.Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.)[J].FEMS Microbiology Ecology, 1998, 26(1):43-50.
[9] IZUMI H, SERA K.Changes in bacterial flora of Japanese cabbage during growth and potential source of flora[J].Journal of Food Protection, 2011, 74(4):645-650.
[10] OSEI R, YANG C D, CUI L X, et al.Isolation, identification, and pathogenicity of Lelliottia amnigena causing soft rot of potato Tuber in China[J].Microbial Pathogenesis, 2022, 164:105441.
[11] LEFF J W, FIERER N.Bacterial communities associated with the surfaces of fresh fruits and vegetables[J].PLoS One, 2013, 8(3):e59310.
[12] BEHRENDT U, ULRICH A, SCHUMANN P.Plantibacter[M].John Wiley & Sons, Inc., 2015.
[13] LIANG H P, YIN L G, ZHANG Y H, et al.Dynamics and diversity of a microbial community during the fermentation of industrialized Qingcai Paocai, a traditional Chinese fermented vegetable food, as assessed by Illumina MiSeq sequencing, DGGE and qPCR assay[J].Annals of Microbiology, 2018, 68(2):111-122.
[14] PENCE N, LEWIS N, ALLEMAN A B, et al.Revealing a role for the G subunit in mediating interactions between the nitrogenase component proteins[J].Journal of Inorganic Biochemistry, 2021, 214:111273.
[15] DURAND S, GUILLIER M.Transcriptional and post-transcriptional control of the nitrate respiration in bacteria[J].Frontiers in Molecular Biosciences, 2021, 8:667758.
[16] GONZÁLEZ P J, CORREIA C, MOURA I, et al.Bacterial nitrate reductases:Molecular and biological aspects of nitrate reduction[J].Journal of Inorganic Biochemistry, 2006, 100(5-6):1015-1023.
[17] LIN J T, GOLDMAN B S, STEWART V.Structures of genes NasA and nasB, encoding assimilatory nitrate and nitrite reductases in Klebsiella pneumoniae M5al[J].Journal of Bacteriology, 1993, 175(8):2370-2378.
[18] SPARACINO-WATKINS C, STOLZ J F, BASU P.Nitrate and periplasmic nitrate reductases[J].Chemical Society Reviews, 2014, 43(2):676-706.
[19] HARBORNE N R, GRIFFITHS L, BUSBY S J, et al.Transcriptional control, translation and function of the products of the five open reading frames of the Escherichia coli nir operon[J].Molecular Microbiology, 1992, 6(19):2805-2813.
[20] KHLEBODAROVA T M, REE N A, LIKHOSHVAI V A.On the control mechanisms of the nitrite level in Escherichia coli cells:The mathematical model[J].BMC Microbiology, 2016, 16(1):7.
[21] LI R R, ZHENG M L, ZHENG M H, et al.Metagenomic analysis reveals the linkages between bacteria and the functional enzymes responsible for potential ammonia and biogenic amine production in alfalfa silage[J].Journal of Applied Microbiology, 2022, 132(4):2594-2604.
[22] BESSON S, ALMEIDA M G, SILVEIRA C M.Nitrite reduction in bacteria:A comprehensive view of nitrite reductases[J].Coordination Chemistry Reviews, 2022, 464:214560.
[23] WANG Z X, SHAO Y Y.Effects of microbial diversity on nitrite concentration in Pao cai, a naturally fermented cabbage product from China[J].Food Microbiology, 2018, 72:185-192.
[24] DODDS K L, COLLINS-THOMPSON D L.Incidence of nitrite-depleting lactic acid bacteria in cured meats and in meat starter cultures[J].Journal of Food Protection, 1984, 47(1):7-10.
[25] GREENWOOD N N, EARNSHAW A.Chemistry of the Elements (Second Edition).Chapter11 Nitrogen[M].Elsevier Ltd., 1997.
[26] QIU H L, CHANG X Y, LUO Y, et al.Regulation of Nir gene in Lactobacillus plantarum WU14 mediated by GlnR[J].Frontiers in Microbiology, 2022, 13:983485.
[27] BRISSE S, GRIMONT F, GRIMONT P A D.The Prokaryotes.The Genus Klebsiella[M].Springer,2006.
[28] KHALIFA A.Beneficial Microbes in Agro-Ecology Bacteria and Fungi.Chapter 14 Enterobacter[M].Elsevier Inc.,2020.
[29] BERDE C V, BRAMHACHARI P V, BERDE V B.Plant growth-promoting diazotrophs:Current research and advancements[M].Amsterdam:Elsevier, 2022:207-223.
[30] THAKUR P, GAUBA P.Identification and examination of nitrogen metabolic genes in Lelliottia amnigena PTJIIT1005 for their ability to perform nitrate remediation[J].BMC Genomics, 2023, 24(1):104.
[31] WATTS C A, RIDLEY H, CONDIE K L, et al.Selenate reduction by Enterobacter cloacae SLD1a-1 is catalysed by a molybdenum-dependent membrane-bound enzyme that is distinct from the membrane-bound nitrate reductase[J].FEMS Microbiology Letters, 2003, 228(2):273-279.
[32] RAJTA A, BHATIA R, SETIA H, et al.Role of heterotrophic aerobic denitrifying bacteria in nitrate removal from wastewater[J].Journal of Applied Microbiology, 2020, 128(5):1261-1278.
[33] BORRERO-DE ACUÑA J M, ROHDE M, WISSING J, et al.Protein network of the Pseudomonas aeruginosa denitrification apparatus[J].Journal of Bacteriology, 2016, 198(9):1401-1413.
[34] ZHANG Y, LI D H, YAN Q, et al.Genome-wide analysis reveals the emergence of multidrug resistant Stenotrophomonas acidaminiphila strain SINDOREI isolated from a patient with sepsis[J].Frontiers in Microbiology, 2022, 13:989259.
[35] SODERGREN E J, HSU P Y, DEMOSS J A.Roles of the narJ and narI gene products in the expression of nitrate reductase in Escherichia coli[J].Journal of Biological Chemistry, 1988, 263(31):16156-16162.
文章导航

/