[1] FIEDOR J, BURDA K. Potential role of carotenoids as antioxidants in human health and disease[J]. Nutrients, 2014, 6(2):466-488.
[2] WANG J, HU X G, CHEN J B, et al. The extraction of β-carotene from microalgae for testing their health benefits[J]. Foods, 2022, 11(4):502.
[3] SINGH R V, SAMBYAL K. An overview of β-carotene production: Current status and future prospects[J]. Food Bioscience, 2022, 47:101717.
[4] RODRIGUEZ-AMAYA D B. Structures and analysis of carotenoid molecules[J]. Sub-Cellular Biochemistry, 2016, 79:71-108.
[5] BOGACZ-RADOMSKA L, HARASYM J. β-Carotene—Properties and production methods[J]. Food Quality and Safety, 2018, 2(2):69-74.
[6] YU N, SU X M, WANG Z F, et al. Association of dietary vitamin A and β-carotene intake with the risk of lung cancer: A meta-analysis of 19 publications[J]. Nutrients, 2015, 7(11):9309-9324.
[7] CARROLL Y L, CORRIDAN B M, MORRISSEY P A. Lipoprotein carotenoid profiles and the susceptibility of low density lipoprotein to oxidative modification in healthy elderly volunteers[J]. European Journal of Clinical Nutrition, 2000, 54(6):500-507.
[8] HASKELL M J. The challenge to reach nutritional adequacy for vitamin A: β-carotene bioavailability and conversion: Evidence in humans[J]. The American Journal of Clinical Nutrition, 2012, 96(5):1193S-1203S.
[9] YANG J Q, ZHANG Y L, NA X N, et al. β-carotene supplementation and risk of cardiovascular disease: A systematic review and meta-analysis of randomized controlled trials[J]. Nutrients, 2022, 14(6):1284.
[10] WANG J L, NIYOMPANICH S, TAI Y S, et al. Engineering of a highly efficient Escherichia coli strain for mevalonate fermentation through chromosomal integration[J]. Applied and Environmental Microbiology, 2016, 82(24):7176-7184.
[11] KIZER L, PITERA D J, PFLEGER B F, et al. Application of functional genomics to pathway optimization for increased isoprenoid production[J]. Applied and Environmental Microbiology, 2008, 74(10):3229-3241.
[12] LI C, SWOFFORD C A, SINSKEY A J. Modular engineering for microbial production of carotenoids[J]. Metabolic Engineering Communications, 2020, 10: e00118.
[13] VERDOES J C, SANDMANN G, VISSER H, et al. Metabolic engineering of the carotenoid biosynthetic pathway in the yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma)[J]. Applied and Environmental Microbiology, 2003, 69(7):3728-3738.
[14] VELAYOS A, ESLAVA A P, ITURRIAGA E A. A bifunctional enzyme with lycopene cyclase and phytoene synthase activities is encoded by the carRP gene of Mucor circinelloides[J]. European Journal of Biochemistry, 2000, 267(17):5509-5519.
[15] IWASAKA H, KOYANAGI R, SATOH R, et al. A possible trifunctional β-carotene synthase gene identified in the draft genome of Aurantiochytrium sp. strain KH105[J]. Genes, 2018, 9(4):200.
[16] 戴冠苹, 孙涛, 苗良田, 等. RBS文库调控重组大肠杆菌β-胡萝卜素合成途径关键基因提高β-胡萝卜素合成能力[J]. 生物工程学报, 2014, 30(8):1193-1203.
DAI G P, SUN T, MIAO L T, et al. Modulating expression of key genes within β-carotene synthetic pathway in recombinant Escherichia coli with RBS library to improve β-carotene production[J]. Chinese Journal of Biotechnology, 2014, 30(8):1193-1203.
[17] KIM M J, NOH M H, WOO S, et al. Enhanced lycopene production in Escherichia coli by expression of two mep pathway enzymes from Vibrio sp. dhg[J]. Catalysts, 2019, 9(12):1003.
[18] ZHAO J, LI Q Y, SUN T, et al. Engineering central metabolic modules of Escherichia coli for improving β-carotene production[J]. Metabolic Engineering, 2013, 17:42-50.
[19] YOON S H, LEE S H, DAS A, et al. Combinatorial expression of bacterial whole mevalonate pathway for the production of β-carotene in E. coli[J]. Journal of Biotechnology, 2009, 140(3-4):218-226.
[20] YANG J M, GUO L Z. Biosynthesis of β-carotene in engineered E. coli using the MEP and MVA pathways[J]. Microbial Cell Factories, 2014, 13:160.
[21] YAMANO S, ISHII T, NAKAGAWA M, et al. Metabolic engineering for production of beta-carotene and lycopene in Saccharomyces cerevisiae[J]. Bioscience, Biotechnology, and Biochemistry, 1994, 58(6):1112-1114.
[22] VERWAAL R, WANG J, MEIJNEN J P, et al. High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous[J]. Applied and Environmental Microbiology, 2007, 73(13):4342-4350.
[23] XIE W P, YE L D, LV X M, et al. Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2015, 28:8-18.
[24] FAN J, ZHANG Y, LI W H, et al. Multidimensional optimization of Saccharomyces cerevisiae for carotenoid overproduction[J]. Biodesign Research, 2024, 6:0026.
[25] JING Y W, WANG J N, GAO H Y, et al. Enhanced β-carotene production in Yarrowia lipolytica through the metabolic and fermentation engineering[J]. Journal of Industrial Microbiology & Biotechnology, 2023, 50(1): kuad009.
[26] GAO S L, TONG Y Y, ZHU L, et al. Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production[J]. Metabolic Engineering, 2017, 41:192-201.
[27] LARROUDE M, CELINSKA E, BACK A, et al. A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of β-carotene[J]. Biotechnology and Bioengineering, 2018, 115(2):464-472.
[28] WU T, YE L J, ZHAO D D, et al. Membrane engineering-A novel strategy to enhance the production and accumulation of β-carotene in Escherichia coli[J]. Metabolic Engineering, 2017, 43(Pt A):85-91.
[29] WU T, LI S W, YE L J, et al. Engineering an artificial membrane vesicle trafficking system (AMVTS) for the excretion of β-carotene in Escherichia coli[J]. ACS Synthetic Biology, 2019, 8(5):1037-1046.
[30] 赵婧, 刘怡, 李清艳, 等. 多个调控元件调控萜类合成途径基因表达提高β-胡萝卜素的生产[J]. 生物工程学报, 2013, 29(1): 41-55.
ZHAO J, LIU Y, LI Q Y, et al. Modulation of isoprenoid gene expression with multiple regulatory parts for improved β-carotene production[J]. Chinese Journal of Biotechnology, 2013, 29(1): 41-55.
[31] WU Y Q, YAN P P, LI Y, et al. Enhancing β-carotene production in Escherichia coli by perturbing central carbon metabolism and improving the NADPH supply[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8:585.
[32] BU X, LIN J Y, DUAN C Q, et al. Dual regulation of lipid droplet-triacylglycerol metabolism and ERG9 expression for improved β-carotene production in Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2022, 21(1):3.
[33] ZHAO Y J, ZHANG Y P, NIELSEN J, et al. Production of β-carotene in Saccharomyces cerevisiae through altering yeast lipid metabolism[J]. Biotechnology and Bioengineering, 2021, 118(5):2043-2052.
[34] LI J, SHEN J, SUN Z Q, et al. Discovery of several novel targets that enhance β-carotene production in Saccharomyces cerevisiae[J]. Frontiers in Microbiology, 2017, 8:1116.
[35] MA Y S, LIU N, GREISEN P, et al. Removal of lycopene substrate inhibition enables high carotenoid productivity in Yarrowia lipolytica[J]. Nature Communications, 2022, 13(1):572.
[36] LIU M M, ZHANG J, YE J R, et al. Morphological and metabolic engineering of Yarrowia lipolytica to increase β-carotene production[J]. ACS Synthetic Biology, 2021, 10(12):3551-3560.
[37] ZHANG X K, WANG D N, CHEN J, et al. Metabolic engineering of β-carotene biosynthesis in Yarrowia lipolytica[J]. Biotechnology Letters, 2020, 42(6):945-956.
[38] QIAO K J, WASYLENKO T M, ZHOU K, et al. Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism[J]. Nature Biotechnology, 2017, 35(2):173-177.
[39] MAN Z W, GUO J, ZHANG Y Y, et al. Regulation of intracellular ATP supply and its application in industrial biotechnology[J]. Critical Reviews in Biotechnology, 2020, 40(8):1151-1162.
[40] LUO Z S, LIU N, LAZAR Z, et al. Enhancing isoprenoid synthesis in Yarrowia lipolytica by expressing the isopentenol utilization pathway and modulating intracellular hydrophobicity[J]. Metabolic Engineering, 2020, 61:344-351.
[41] CAO X, WEI L J, LIN J Y, et al. Enhancing linalool production by engineering oleaginous yeast Yarrowia lipolytica[J]. Bioresource Technology, 2017, 245:1641-1644.
[42] LIU H, MARSAFARI M, DENG L, et al. Understanding lipogenesis by dynamically profiling transcriptional activity of lipogenic promoters in Yarrowia lipolytica[J]. Applied Microbiology and Biotechnology, 2019, 103(7):3167-3179.
[43] SUN T, MIAO L T, LI Q Y, et al. Production of lycopene by metabolically-engineered Escherichia coli[J]. Biotechnology Letters, 2014, 36(7):1515-1522.
[44] CAO X, YU W, CHEN Y, et al. Engineering yeast for high-level production of diterpenoid sclareol[J]. Metabolic Engineering, 2023, 75:19-28.
[45] ZHANG X K, NIE M Y, CHEN J, et al. Multicopy integrants of crt genes and co-expression of AMP deaminase improve lycopene production in Yarrowia lipolytica[J]. Journal of Biotechnology, 2019, 289:46-54.
[46] JIN C C, ZHANG J L, SONG H, et al. Boosting the biosynthesis of betulinic acid and related triterpenoids in Yarrowia lipolytica via multimodular metabolic engineering[J]. Microbial Cell Factories, 2019, 18(1):77.
[47] SADRE R, KUO P, CHEN J X, et al. Cytosolic lipid droplets as engineered organelles for production and accumulation of terpenoid biomaterials in leaves[J]. Nature Communications, 2019, 10(1):853.
[48] TANAKA S, TANI M. Mannosylinositol phosphorylceramides and ergosterol coodinately maintain cell wall integrity in the yeast Saccharomyces cerevisiae[J]. The FEBS Journal, 2018, 285(13):2405-2427.
[49] KILDEGAARD K R, ADIEGO-PÉREZ B, DOMÉNECH BELDA D, et al. Engineering of Yarrowia lipolytica for production of astaxanthin[J]. Synthetic and Systems Biotechnology, 2017, 2(4):287-294.
[50] YAO L, WU X M, JIANG X, et al. Subcellular compartmentalization in the biosynthesis and engineering of plant natural products[J]. Biotechnology Advances, 2023, 69:108258.
[51] MORE T H, HILLER K. Complexity of subcellular metabolism: Strategies for compartment-specific profiling[J]. Current Opinion in Biotechnology, 2022, 75:102711.
[52] WANG R W, LIU X, LV B, et al. Designing intracellular compartments for efficient engineered microbial cell factories[J]. ACS Synthetic Biology, 2023, 12(5):1378-1395.
[53] MATSUMOTO T, OSAWA T, TANIGUCHI H, et al. Mitochondrial expression of metabolic enzymes for improving carotenoid production in Saccharomyces cerevisiae[J]. Biochemical Engineering Journal, 2022, 189:108720.
[54] LYU X M, WANG F, ZHOU P P, et al. Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae[J]. Nature Communications, 2016, 7:12851.
[55] MA Y S, LI J B, HUANG S W, et al. Targeting pathway expression to subcellular organelles improves astaxanthin synthesis in Yarrowia lipolytica[J]. Metabolic Engineering, 2021, 68:152-161.
[56] SCHWARTZ C, SHABBIR-HUSSAIN M, FROGUE K, et al. Standardized markerless gene integration for pathway engineering in Yarrowia lipolytica[J]. ACS Synthetic Biology, 2017, 6(3):402-409.
[57] KANG W, MA T, LIU M, et al. Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux[J]. Nature Communications, 2019, 10(1):4248.