综述与专题评论

微生物合成β-胡萝卜素的研究进展

  • 陈卯森 ,
  • 王育焜 ,
  • 钟洁 ,
  • 祁峰
展开
  • 1(福建师范大学 生命科学学院,工业微生物发酵技术国家地方联合工程研究中心,福建 福州,350117)
    2(福建师范大学细胞逆境响应与代谢调控福建省高校重点实验室,福建 福州,350117)
第一作者:硕士研究生(祁峰教授为通信作者,E-mail:f.qi@fjnu.edu.cn)

收稿日期: 2024-03-08

  修回日期: 2024-05-08

  网络出版日期: 2025-02-14

基金资助

国家自然科学基金(32272287);国家现代农业(糖料)产业技术体系建设专项资助项目(CARS-170501)

Research advances in microbial synthesis of β-carotene

  • CHEN Maosen ,
  • WANG Yukun ,
  • ZHONG Jie ,
  • QI Feng
Expand
  • 1(National and Local Joint Engineering Research Center for Industrial Microbial Fermentation Technology, College of Life Science, Fujian Normal University, Fuzhou 350117, China)
    2(Fujian Provincial Key Laboratory of Cell Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou 350117, China)

Received date: 2024-03-08

  Revised date: 2024-05-08

  Online published: 2025-02-14

摘要

β-胡萝卜素是一种常见的类胡萝卜素,具有抗氧化、抗癌和预防心血管疾病等作用,广泛应用于食品、医药和化妆品等行业。β-胡萝卜素主要从植物、藻类等生物中提取,这种提取方法具有环境污染严重和生产成本高等缺点。随着合成生物学技术的发展和代谢工程策略的创新,利用大肠杆菌、酿酒酵母、解脂耶氏酵母等微生物构建细胞工厂来异源生产β-胡萝卜素已取得一定成果,生物合成方法具有环境污染小、生产成本低、效率高等优点,发展前景广阔。文章阐述了β-胡萝卜素的理化性质、生物学价值及其生物合成途径,总结了微生物合成β-胡萝卜素的相关研究,并归纳了目前用以提高β-胡萝卜素产量的常用代谢工程策略。最后该文对β-胡萝卜素生物合成所面临的挑战和未来研究方向进行了探讨,以期为获得更高产量的β-胡萝卜素提供借鉴。

本文引用格式

陈卯森 , 王育焜 , 钟洁 , 祁峰 . 微生物合成β-胡萝卜素的研究进展[J]. 食品与发酵工业, 2025 , 51(2) : 356 -364 . DOI: 10.13995/j.cnki.11-1802/ts.039149

Abstract

β-carotene is a common carotenoid with antioxidant, anticancer and cardiovascular disease prevention properties and is widely used in food, pharmaceutical and cosmetic industries.β-carotene is mainly extracted from plants, algae and other organisms, and the extraction method has the disadvantages of serious environmental pollution and high production cost.With the advancement of synthetic biology technology and the innovation of metabolic engineering strategies, significant progress has been achieved in constructing cell factories for β-carotene production using microorganisms such as Escherichia coli, Saccharomyces cerevisiae, and Yarrowia lipolytica.The biosynthesis method offers advantages including low environmental impact, cost-effectiveness, and high efficiency, with promising prospects for further development.In this review, the physicochemical properties, biological value and biosynthesis pathway of β-carotene are investigated, the relevant studies on microbial synthesis of β-carotene are summarized, and the common metabolic engineering strategies used in increasing the yield of β-carotene are also concluded.Finally, in order to provide reference for obtaining higher yield of β-carotene, the challenges and future research directions of β-carotene biosynthesis are discussed.

参考文献

[1] FIEDOR J, BURDA K. Potential role of carotenoids as antioxidants in human health and disease[J]. Nutrients, 2014, 6(2):466-488.
[2] WANG J, HU X G, CHEN J B, et al. The extraction of β-carotene from microalgae for testing their health benefits[J]. Foods, 2022, 11(4):502.
[3] SINGH R V, SAMBYAL K. An overview of β-carotene production: Current status and future prospects[J]. Food Bioscience, 2022, 47:101717.
[4] RODRIGUEZ-AMAYA D B. Structures and analysis of carotenoid molecules[J]. Sub-Cellular Biochemistry, 2016, 79:71-108.
[5] BOGACZ-RADOMSKA L, HARASYM J. β-Carotene—Properties and production methods[J]. Food Quality and Safety, 2018, 2(2):69-74.
[6] YU N, SU X M, WANG Z F, et al. Association of dietary vitamin A and β-carotene intake with the risk of lung cancer: A meta-analysis of 19 publications[J]. Nutrients, 2015, 7(11):9309-9324.
[7] CARROLL Y L, CORRIDAN B M, MORRISSEY P A. Lipoprotein carotenoid profiles and the susceptibility of low density lipoprotein to oxidative modification in healthy elderly volunteers[J]. European Journal of Clinical Nutrition, 2000, 54(6):500-507.
[8] HASKELL M J. The challenge to reach nutritional adequacy for vitamin A: β-carotene bioavailability and conversion: Evidence in humans[J]. The American Journal of Clinical Nutrition, 2012, 96(5):1193S-1203S.
[9] YANG J Q, ZHANG Y L, NA X N, et al. β-carotene supplementation and risk of cardiovascular disease: A systematic review and meta-analysis of randomized controlled trials[J]. Nutrients, 2022, 14(6):1284.
[10] WANG J L, NIYOMPANICH S, TAI Y S, et al. Engineering of a highly efficient Escherichia coli strain for mevalonate fermentation through chromosomal integration[J]. Applied and Environmental Microbiology, 2016, 82(24):7176-7184.
[11] KIZER L, PITERA D J, PFLEGER B F, et al. Application of functional genomics to pathway optimization for increased isoprenoid production[J]. Applied and Environmental Microbiology, 2008, 74(10):3229-3241.
[12] LI C, SWOFFORD C A, SINSKEY A J. Modular engineering for microbial production of carotenoids[J]. Metabolic Engineering Communications, 2020, 10: e00118.
[13] VERDOES J C, SANDMANN G, VISSER H, et al. Metabolic engineering of the carotenoid biosynthetic pathway in the yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma)[J]. Applied and Environmental Microbiology, 2003, 69(7):3728-3738.
[14] VELAYOS A, ESLAVA A P, ITURRIAGA E A. A bifunctional enzyme with lycopene cyclase and phytoene synthase activities is encoded by the carRP gene of Mucor circinelloides[J]. European Journal of Biochemistry, 2000, 267(17):5509-5519.
[15] IWASAKA H, KOYANAGI R, SATOH R, et al. A possible trifunctional β-carotene synthase gene identified in the draft genome of Aurantiochytrium sp. strain KH105[J]. Genes, 2018, 9(4):200.
[16] 戴冠苹, 孙涛, 苗良田, 等. RBS文库调控重组大肠杆菌β-胡萝卜素合成途径关键基因提高β-胡萝卜素合成能力[J]. 生物工程学报, 2014, 30(8):1193-1203.
DAI G P, SUN T, MIAO L T, et al. Modulating expression of key genes within β-carotene synthetic pathway in recombinant Escherichia coli with RBS library to improve β-carotene production[J]. Chinese Journal of Biotechnology, 2014, 30(8):1193-1203.
[17] KIM M J, NOH M H, WOO S, et al. Enhanced lycopene production in Escherichia coli by expression of two mep pathway enzymes from Vibrio sp. dhg[J]. Catalysts, 2019, 9(12):1003.
[18] ZHAO J, LI Q Y, SUN T, et al. Engineering central metabolic modules of Escherichia coli for improving β-carotene production[J]. Metabolic Engineering, 2013, 17:42-50.
[19] YOON S H, LEE S H, DAS A, et al. Combinatorial expression of bacterial whole mevalonate pathway for the production of β-carotene in E. coli[J]. Journal of Biotechnology, 2009, 140(3-4):218-226.
[20] YANG J M, GUO L Z. Biosynthesis of β-carotene in engineered E. coli using the MEP and MVA pathways[J]. Microbial Cell Factories, 2014, 13:160.
[21] YAMANO S, ISHII T, NAKAGAWA M, et al. Metabolic engineering for production of beta-carotene and lycopene in Saccharomyces cerevisiae[J]. Bioscience, Biotechnology, and Biochemistry, 1994, 58(6):1112-1114.
[22] VERWAAL R, WANG J, MEIJNEN J P, et al. High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous[J]. Applied and Environmental Microbiology, 2007, 73(13):4342-4350.
[23] XIE W P, YE L D, LV X M, et al. Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2015, 28:8-18.
[24] FAN J, ZHANG Y, LI W H, et al. Multidimensional optimization of Saccharomyces cerevisiae for carotenoid overproduction[J]. Biodesign Research, 2024, 6:0026.
[25] JING Y W, WANG J N, GAO H Y, et al. Enhanced β-carotene production in Yarrowia lipolytica through the metabolic and fermentation engineering[J]. Journal of Industrial Microbiology & Biotechnology, 2023, 50(1): kuad009.
[26] GAO S L, TONG Y Y, ZHU L, et al. Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production[J]. Metabolic Engineering, 2017, 41:192-201.
[27] LARROUDE M, CELINSKA E, BACK A, et al. A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of β-carotene[J]. Biotechnology and Bioengineering, 2018, 115(2):464-472.
[28] WU T, YE L J, ZHAO D D, et al. Membrane engineering-A novel strategy to enhance the production and accumulation of β-carotene in Escherichia coli[J]. Metabolic Engineering, 2017, 43(Pt A):85-91.
[29] WU T, LI S W, YE L J, et al. Engineering an artificial membrane vesicle trafficking system (AMVTS) for the excretion of β-carotene in Escherichia coli[J]. ACS Synthetic Biology, 2019, 8(5):1037-1046.
[30] 赵婧, 刘怡, 李清艳, 等. 多个调控元件调控萜类合成途径基因表达提高β-胡萝卜素的生产[J]. 生物工程学报, 2013, 29(1): 41-55.
ZHAO J, LIU Y, LI Q Y, et al. Modulation of isoprenoid gene expression with multiple regulatory parts for improved β-carotene production[J]. Chinese Journal of Biotechnology, 2013, 29(1): 41-55.
[31] WU Y Q, YAN P P, LI Y, et al. Enhancing β-carotene production in Escherichia coli by perturbing central carbon metabolism and improving the NADPH supply[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8:585.
[32] BU X, LIN J Y, DUAN C Q, et al. Dual regulation of lipid droplet-triacylglycerol metabolism and ERG9 expression for improved β-carotene production in Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2022, 21(1):3.
[33] ZHAO Y J, ZHANG Y P, NIELSEN J, et al. Production of β-carotene in Saccharomyces cerevisiae through altering yeast lipid metabolism[J]. Biotechnology and Bioengineering, 2021, 118(5):2043-2052.
[34] LI J, SHEN J, SUN Z Q, et al. Discovery of several novel targets that enhance β-carotene production in Saccharomyces cerevisiae[J]. Frontiers in Microbiology, 2017, 8:1116.
[35] MA Y S, LIU N, GREISEN P, et al. Removal of lycopene substrate inhibition enables high carotenoid productivity in Yarrowia lipolytica[J]. Nature Communications, 2022, 13(1):572.
[36] LIU M M, ZHANG J, YE J R, et al. Morphological and metabolic engineering of Yarrowia lipolytica to increase β-carotene production[J]. ACS Synthetic Biology, 2021, 10(12):3551-3560.
[37] ZHANG X K, WANG D N, CHEN J, et al. Metabolic engineering of β-carotene biosynthesis in Yarrowia lipolytica[J]. Biotechnology Letters, 2020, 42(6):945-956.
[38] QIAO K J, WASYLENKO T M, ZHOU K, et al. Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism[J]. Nature Biotechnology, 2017, 35(2):173-177.
[39] MAN Z W, GUO J, ZHANG Y Y, et al. Regulation of intracellular ATP supply and its application in industrial biotechnology[J]. Critical Reviews in Biotechnology, 2020, 40(8):1151-1162.
[40] LUO Z S, LIU N, LAZAR Z, et al. Enhancing isoprenoid synthesis in Yarrowia lipolytica by expressing the isopentenol utilization pathway and modulating intracellular hydrophobicity[J]. Metabolic Engineering, 2020, 61:344-351.
[41] CAO X, WEI L J, LIN J Y, et al. Enhancing linalool production by engineering oleaginous yeast Yarrowia lipolytica[J]. Bioresource Technology, 2017, 245:1641-1644.
[42] LIU H, MARSAFARI M, DENG L, et al. Understanding lipogenesis by dynamically profiling transcriptional activity of lipogenic promoters in Yarrowia lipolytica[J]. Applied Microbiology and Biotechnology, 2019, 103(7):3167-3179.
[43] SUN T, MIAO L T, LI Q Y, et al. Production of lycopene by metabolically-engineered Escherichia coli[J]. Biotechnology Letters, 2014, 36(7):1515-1522.
[44] CAO X, YU W, CHEN Y, et al. Engineering yeast for high-level production of diterpenoid sclareol[J]. Metabolic Engineering, 2023, 75:19-28.
[45] ZHANG X K, NIE M Y, CHEN J, et al. Multicopy integrants of crt genes and co-expression of AMP deaminase improve lycopene production in Yarrowia lipolytica[J]. Journal of Biotechnology, 2019, 289:46-54.
[46] JIN C C, ZHANG J L, SONG H, et al. Boosting the biosynthesis of betulinic acid and related triterpenoids in Yarrowia lipolytica via multimodular metabolic engineering[J]. Microbial Cell Factories, 2019, 18(1):77.
[47] SADRE R, KUO P, CHEN J X, et al. Cytosolic lipid droplets as engineered organelles for production and accumulation of terpenoid biomaterials in leaves[J]. Nature Communications, 2019, 10(1):853.
[48] TANAKA S, TANI M. Mannosylinositol phosphorylceramides and ergosterol coodinately maintain cell wall integrity in the yeast Saccharomyces cerevisiae[J]. The FEBS Journal, 2018, 285(13):2405-2427.
[49] KILDEGAARD K R, ADIEGO-PÉREZ B, DOMÉNECH BELDA D, et al. Engineering of Yarrowia lipolytica for production of astaxanthin[J]. Synthetic and Systems Biotechnology, 2017, 2(4):287-294.
[50] YAO L, WU X M, JIANG X, et al. Subcellular compartmentalization in the biosynthesis and engineering of plant natural products[J]. Biotechnology Advances, 2023, 69:108258.
[51] MORE T H, HILLER K. Complexity of subcellular metabolism: Strategies for compartment-specific profiling[J]. Current Opinion in Biotechnology, 2022, 75:102711.
[52] WANG R W, LIU X, LV B, et al. Designing intracellular compartments for efficient engineered microbial cell factories[J]. ACS Synthetic Biology, 2023, 12(5):1378-1395.
[53] MATSUMOTO T, OSAWA T, TANIGUCHI H, et al. Mitochondrial expression of metabolic enzymes for improving carotenoid production in Saccharomyces cerevisiae[J]. Biochemical Engineering Journal, 2022, 189:108720.
[54] LYU X M, WANG F, ZHOU P P, et al. Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae[J]. Nature Communications, 2016, 7:12851.
[55] MA Y S, LI J B, HUANG S W, et al. Targeting pathway expression to subcellular organelles improves astaxanthin synthesis in Yarrowia lipolytica[J]. Metabolic Engineering, 2021, 68:152-161.
[56] SCHWARTZ C, SHABBIR-HUSSAIN M, FROGUE K, et al. Standardized markerless gene integration for pathway engineering in Yarrowia lipolytica[J]. ACS Synthetic Biology, 2017, 6(3):402-409.
[57] KANG W, MA T, LIU M, et al. Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux[J]. Nature Communications, 2019, 10(1):4248.
文章导航

/