Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (4): 13-18    DOI: 10.13995/j.cnki.11-1802/ts.022326
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
高温蒸煮协同纤维素酶改性竹笋膳食纤维
汪楠1,2, 黄山1,2, 张月1,2, 张甫生1,2, 郑炯1,2*
1(西南大学 食品科学学院,重庆, 400715);
2(食品科学与工程国家级实验教学示范中心(西南大学),重庆,400715)
Modification of bamboo shoot dietary fiber by high temperature cooking combined with cellulase
WANG Nan1,2, HUANG Shan1,2, ZHANG Yue1,2, ZHANG Fusheng1,2, ZHENG Jiong1,2*
1(College of Food Science, Southwest University, Chongqing 400715, China);
2(National Demonstration Center for Experimental Food Science and Engineering Education (Southwest University), Chongqing 400715, China)
下载:  HTML   PDF (2195KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以竹笋膳食纤维(bamboo shoot dietary fiber,BSDF)为研究对象,分别采用纤维素酶酶解(ET)、高温蒸煮(HT)、高温蒸煮协同纤维素酶(ET-HT)处理BSDF,分析其结构和理化性质(持水力、膨胀力、持油力、色泽)的变化。结果表明,改性后BSDF的粒径均显著减小(P<0.05),ET-HT40组BSDF的粒径((423±23.7) nm)最小,改性处理后的BSDF的电位均显著下降(P<0.05)。ET-HT处理后BSDF呈片状结构,ET-HT组BSDF的L*值(54.26±0.64)和b*值(18.41±0.29)最小,a*值(9.63±0.17)最大。ET-HT20组BSDF 的持水力((5.29±0.17) g/g)和膨胀力((13.22±0.12) mL/g)最大,ET-HT40组BSDF的持油力((8.35±0.03) g/g)最大。热重分析表明ET-HT处理BSDF的热稳定性最强。红外光谱表明ET、HT和ET-HT改性后BSDF的主要官能团结构未发生改变。综上,ET-HT较单独ET和HT更有效地改善了BSDF的理化性质,是提升BSDF品质的有效方式。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪楠
黄山
张月
张甫生
郑炯
关键词:  竹笋膳食纤维  高温蒸煮  纤维素酶  理化性质  微观结构    
Abstract: Cellulase hydrolysis, high temperature cooking (HT), high temperature cooking combined with cellulose (ET-HT) were applied to modify bamboo shoot dietary fiber (BSDF). The physicochemical properties such as color, water holding capacity, swelling capacity, oil holding capacity, thermal gravity and structure such as particle size, potential, microstructure, infrared spectroscopy were measured. The results showed that the particle size of BSDF were significantly reduced after modifications (P<0.05). The particle size ((423±23.7) nm) of BSDF was the smallest in the group of ET-HT40. The potentials of BSDF were all significantly decreased after modification(P<0.05). BSDF showed flaky structure after ET-HT treatment. The smallest L*(54.26±0.64) and b* (18.41±0.29) were caused by ET-HT treatment meanwhile the largest a*(9.63±0.17)was obtained. The BSDF treated by ET-HT20 has the largest water holding capacity ((5.29±0.17) g/g) and swelling capacity ((13.22±0.12) mL/g) while the largest oil holding capacity ((8.35±0.03) g/g) was obtained with ET-HT40 treatment. Thermal gravity analysis showed that the thermal stability of BSDF was strongest after ET-HT20. Infrared spectroscopy indicated that the main functional groups structure of BSDF were not be changed by ET, HT and ET-HT treatment. Above results showed that ET-HT was an effective approach to improve the physicochemical properties of BSDF compared with ET and HT treatment.
Key words:  bamboo shoot    dietary fiber    high temperature cooking    cellulase    physicochemical properties    microstructure
收稿日期:  2019-09-23                出版日期:  2020-02-25      发布日期:  2020-04-07      期的出版日期:  2020-02-25
基金资助: 国家自然科学基金(31701617)
作者简介:  本科生(郑炯副教授为通讯作者,E-mail:zhengjiong_swu@126.com)
引用本文:    
汪楠,黄山,张月,等. 高温蒸煮协同纤维素酶改性竹笋膳食纤维[J]. 食品与发酵工业, 2020, 46(4): 13-18.
WANG Nan,HUANG Shan,ZHANG Yue,et al. Modification of bamboo shoot dietary fiber by high temperature cooking combined with cellulase[J]. Food and Fermentation Industries, 2020, 46(4): 13-18.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.022326  或          http://sf1970.cnif.cn/CN/Y2020/V46/I4/13
[1] ZENG Heng,CHEN Jiwang,ZHAI Jinling,et al. Reduction of the fat content of battered and breaded fish balls during deep-fat frying using fermented bamboo shoot dietary fiber[J].LWT-Food Science and Technology,2016,73:425-431.
[2] LUO Xianliang,WANG Qi,ZHENG Baodong,et al. Hydration properties and binding capacities of dietary fibers from bamboo shoot shell and its hypolipidemic effects in mice[J]. Food and Chemical Toxicology,2017,109:1 003-1 009.
[3] LI Xiufen,GUO Juan,JI Kailong,et al. Bamboo shoot fiber prevents obesity in mice by modulating the gut microbiota[J]. Scientific Reports,2016,6:1-11.
[4] ZHENG Jiong,WU Jiahao,DAI Yaoyi,et al. Influence of bamboo shoot dietary fiber on the rheological and textural properties of milk pudding[J]. LWT-Food Science and Technonlogy,2017,84:364-369.
[5] MO Yang,WU Liangru,CAO Chongjiang,et al. Improved function of bamboo shoot fibre by high-speed shear dispersing combined with enzyme treatment[J].International Journal of Food Science and Technology,2019,54:844-853.
[6] YAN Jingkun,WU Lixia,CAI Wudan,et al. Subcritical water extraction-based methods affect the physicochemical and functional properties of soluble dietary fibers from wheat bran[J]. Food Chemistry,2019,298:1-9.
[7] HUMA B U A,FARHAN S,AFTAB A.et al. Improving the physicochemical properties of partially enhanced soluble dietary fiber through innovative techniques: A coherent review[J]. Journal of food processing and preservation,2019,43:1-12.
[8] 孙静,邵佩兰,徐明.高温蒸煮结合酶解改性枣渣膳食纤维[J].食品工业科技,2017,38(23):137-142.
[9] SONG Yu,SU Wei,MU Yingchun. Modification of bamboo shoot dietary fiber by extrusion-cellulase technology and its properties[J]. International Journal of Food Properties,2018,21(1):1 219-1 232.
[10] CHEN Bifen,CAI Yongjian,LIU Tongxun,et al. Improvements in physicochemical and emulsifying properties of insoluble soybean fiber by physical-chemical treatments[J]. Food Hydrocolloids,2019,93:167-175.
[11] TEM T D, VASANTHAN T. Modification of rice bran dietary fiber concentrates using enzyme and extrusion cooking[J]. Food Hydrocolloids,2019,89:773-782.
[12] 周丽珍,刘冬,李艳,等.高温蒸煮结合酶解改性豆渣膳食纤维[J]食品研究与开发,2011,32(1):27-30.
[13] CHEN Huanhuan,ZHAO Chunmei,LI Jie,et al. Effects of extrusion on structural and physicochemical properties of soluble dietary fiber from nodes of lotus root[J]. LWT-Food Science and Technology,2018,93:204-211.
[14] HUA Mei,LU Jiaxi,QU Di,et al. Structure,physicochemical properties and adsorption function of insoluble dietary fiber from ginseng residue:A potential functional ingredient[J]. Food Chemistry,2019,286:522-529.
[15] XUE Zihan,CHEN Yue,JIA Yanan,et al. Structure, thermal and rheological properties of different soluble dietary fiber fractions from mushroom Lentinula edodes (Berk.) Pegler residues[J]. Food Hydrocolloids,2019,95:10-18.
[16] YANG Bing,WU Qunjun,SONG Xue,et al. Physicochemical properties and bioactive function of Japanese grape (Hovenia dulcis) pomace insoluble dietary fibre modified by ball milling and complex enzyme treatment[J]. International Journal of Food Science and Technology,2019,54:2 363-2 373.
[17] 刘成梅,蓝海军,涂宗财,等.复合稳定剂对膳食纤维在微射流瞬时高压下团聚性的影响[J].食品科学,2007,28(8):33-36.
[18] HAN Wen,MA Sen,LI Li,et al. Influence of wheat starch on the structural changesand size distribution of gluten induced by adding wheat bran dietary fiber[J].Starch,2018:70.
[19] XIE Fengying,ZHAO Tian,WAN Hongchen,et al. Structural and physicochemical characteristics of rice bran dietary fiber by cellulase and high-pressure homogenization[J].2019,9:1 270-1 280.
[20] IKRAM U,YIN Tao,XIONG Shanbai,et al. Effects of thermal pre-treatment on physicochemical properties of nanosized okara (soybean residue) insoluble dietary fiber prepared by wet media milling[J]. Journal of Food Engineering,2018,237:18-26.
[21] WANG Caihong,MA Yilong,ZHU Danye,et al. Physicochemical and functional properties of dietary fiber from Bamboo Shoots (Phyllostachys praecox)[J]. Emirates Journal of Food and Agriculture,2017,29(7):509-517.
[22] LUO Xianliang,WANG Qi,FANG Dongya,et al. Modification of insoluble dietary fibers from bamboo shoot shell: Structural characterization and functional properties[J]. International Journal of Biological Macromolecules,2018,120:1 461-1 467.
[23] 张明,马超,吴茂玉,等.蒸汽爆破压力对西兰花老茎膳食纤维品质及理化特性的影响[J/OL].食品工业科技:1-11[2020-02-18].http://kns.cnki.net/kcms/detail/11.1759.TS.20190801.1001.004.html.
[24] JIA Mengyun,CHEN Jiajun,LIU Xiaozhen,et al. Structural characteristics and functional properties of soluble dietary fiber from defatted rice bran obtained through Trichoderma viride fermentation[J]. Food Hydrocolloids,2019,94:468-474.
[25] 郑刚,何李,赵国华.高压蒸煮对苹果膳食纤维理化特性及发酵性能的影响[J].食品与发酵工业,2009,35(5):90-93.
[26] 王佳,张颜笑,郑炯.酶解处理对竹笋膳食纤维理化特性的影响[J].食品与发酵工业,2016,42(9):104-108.
[27] DONG Jilin,WANG Lei,LU Jing,et al. Structural,antioxidant and adsorption properties of dietary fiber from foxtail millet (Setaria italica) bran[J]. Journal of the science of food and agriculture,2019,99:3 886-3 894.
[28] KABIR M M,WANG H,LAU K T,et al. Effects of chemical treatments on hemp fibre structure[J]. Applied Surface Science,2013,276:13-23.
[29] CHEN Huanhuan,LI Jie,YAO Ruixue,et al. Mechanism of lipid metabolism regulation by soluble dietary fibre from micronized and non-micronized powders of lotus root nodes as revealed by their adsorption and activity inhibition of pancreatic lipase[J]. Food Chemistry,2019,305:125 434-125 442.
[30] GILLÓPEZ D I,LOISCORREA J A,SNCHEZPARDO M E,et al. Production of dietary fibers from sugarcane bagasse and sugarcane tops using microwave-assisted alkaline treatments[J]. Industrial Crops & Products,2019,135:159-169.
[31] ANUPAMA K, MANDEEP S. Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization[J]. Carbohydrate Research,2011,346:76-85.
[32] ZHANG Mengyun,LIAO Aimei,KIRAN T,et al. Modification of wheat bran insoluble dietary fiber with carboxymethylation, complex enzymatic hydrolysis and ultrafine comminution[J]. Food Chemistry,2019,297:124 983-124 992.
[1] 王巧莉, 孔梓璇, 谭强飞, 贠建民, 张紊玮, 赵风云. 草菇组织分离继代中菌种退化对相关酶活力的影响[J]. 食品与发酵工业, 2021, 47(8): 1-5.
[2] 李梦钰, 刘会平, 贾琦, 吴亚茹. 天冬多糖理化性质和流变学特性研究[J]. 食品与发酵工业, 2021, 47(5): 48-56.
[3] 弘子姗, 谭超, 杨宁. 体外模拟发酵对咖啡理化性质及品质的影响[J]. 食品与发酵工业, 2021, 47(4): 54-59.
[4] 文晓霞, 白光剑, 李韬, 马一凡, 邹伟. 液态发酵原位酶解糖化水稻秸秆工艺优化[J]. 食品与发酵工业, 2021, 47(4): 166-172.
[5] 陈致印, 刘伟鹏, 王盈希, 曾立, 向国红, 刘桃李, 龚意辉. 三种不同改性方法对甘薯渣不溶性膳食纤维改性效果的研究[J]. 食品与发酵工业, 2021, 47(2): 57-62.
[6] 李艳红, 王稳航. 低温热处理对牦牛肉理化性质及感官特性的影响[J]. 食品与发酵工业, 2021, 47(2): 145-152.
[7] 鲍诗晗, 李诗雯, 何玉英, 李佳琪, 王家琪, 兰天, 孙翔宇, 马婷婷. 烹饪方式对胡萝卜感官品质及营养素含量的影响[J]. 食品与发酵工业, 2020, 46(8): 149-156.
[8] 宋丽丽, 闻格, 霍姗浩, 胡晓龙, 杨旭, 张志平. 白酒酒糟中产纤维素酶细菌的分离筛选和酶学性质研究[J]. 食品与发酵工业, 2020, 46(7): 43-49.
[9] 徐思宁, 刘红波, 唐志书, 宋忠兴, 孙静, 崔春利, 蔡兴航, 于金高, 刘世军, 孙晓春. 沙棘果浆微囊喷雾干燥制备工艺及其理化性质研究[J]. 食品与发酵工业, 2020, 46(6): 121-126.
[10] 黄山, 汪楠, 张月, 张甫生, 郑炯. 机械球磨处理对麻竹笋壳膳食纤维理化性质及结构的影响[J]. 食品与发酵工业, 2020, 46(5): 115-120.
[11] 常馨月, 陈程莉, 董全. 奇亚籽油微胶囊的制备及表征[J]. 食品与发酵工业, 2020, 46(5): 200-207.
[12] 龚珏, 唐善虎, 李思宁, 郑娇, 谭雪梅. 乳酸菌对发酵牦牛肉灌肠理化性质及挥发性风味物质的影响[J]. 食品与发酵工业, 2020, 46(4): 57-64.
[13] 郑文迪, 关倩倩, 刘长根, 魏本良, 熊世进, 熊涛. 基于GC-MS法对比广西地区酸菜和酸笋风味的差异[J]. 食品与发酵工业, 2020, 46(4): 253-257.
[14] 林柳, 陶宁萍. 鱼头汤在体外仿生消化系统中的运动参数优化及消化特性研究[J]. 食品与发酵工业, 2020, 46(23): 92-98.
[15] 杨阳, 王松涛, 许正宏, 史劲松. 半纤维素的微生物酶促降解及其在酿造中的应用[J]. 食品与发酵工业, 2020, 46(23): 255-262.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn