以木薯淀粉为原料,在微波和超声波双外场的作用下采用沉淀法制备淀粉纳米颗粒(starch nanoparticles, SNPs)。通过动态光散射仪(dynamic light scattering, DLS)、场发射扫描电镜(scanning electronic microscope, SEM)、原子力显微镜(atomic force microscope, AFM)、比表面积分析仪(Brunner-Emmet-Teller, BET)对SNPs进行表征,考察了SNPs对番红花红T的吸附机理,进一步考察了时间、吸附剂的投加量、粒径对吸附的影响。结果表明:SNPs具有较好的球形形貌,是V型淀粉晶体结构,Zeta电位值为-23.7 mV,比表面积大大增加。在番红花红T的质量浓度为200 mg/L,吸附时间为60 min,温度为298.15 K的条件下,投加20 mg平均粒径为40 nm的SNPs,吸附量可达115 mg/g。SNPs对番红花红T的吸附过程符合准二级动力学模型和Langmuir等温吸附模型。
[1] CHANG X, CHEN D, JIAO X. Starch-derived carbon aerogels with high-performance for sorption of cationic dyes[J]. Polymer, 2010,51(16):3 801-3 807.
[2] PAZ A, CARBALLO J, PÉREZ M J, et al. Biological treatment of model dyes and textile wastewaters[J]. Chemosphere, 2017,181:168-177.
[3] BADDOUH A, BESSEGATO G G, RGUITI M M, et al. Electrochemical decolorization of Rhodamine B dye: influence of anode material, chloride concentration and current density[J]. Journal of Environmental Chemical Engineering, 2018,6(2):2 041-2 047.
[4] LIU S Q, FENG L R, XU N, et al. Magnetic nickel ferrite as a heterogeneous photo-Fenton catalyst for the degradation of rhodamine B in the presence of oxalic acid[J]. Chemical Engineering Journal, 2012,203(5):432-439.
[5] SINGH P N, TIWARY D, SINHA I. Chromium removal from aqueous media by superparamagnetic starch functionalized maghemite nanoparticles[J]. Journal of Chemical Sciences, 2015,127(11):1 967-1 976.
[6] LEE J Y, BHATTACHARYA B, YUN H K, et al. Self degradation of polymer electrolyte based dye-sensitized solar cells and their remedy[J]. Solid State Communications, 2009, 149(7):307-309.
[7] WANG J J, HUANG H, WANG J W, et al. Fixed-bed adsorption of methylene blue from aqueous solutions by porous starch[J]. Applied Mechanics & Materials, 2014,665:491-494.
[8] 李天琪,胡飞.淀粉基重金属捕集剂的表征及捕集效能[J].精细化工,2018,35(3):463-468;524.
[9] 山田雅英, 坊木佳人,松山明子. Adsorption of cationic methylene blue and anionic methyl orange by crude drug starches[J]. Journal of Applied Glycoscience, 2005,52(2):101-106.
[10] 王建坤,郭晶,张昊,等.交联阳离子淀粉对活性染料吸附性能的研究[J].工业水处理,2018,38(6):17-21.
[11] CHANG X, CHEN D, JIAO X. Starch-derived carbon aerogels with high-performance for sorption of cationic dyes[J]. Polymer, 2010,51(16):3 801-3 807.
[12] ALILA S, ALOULOU F, THIELEMANS W, et al. Sorption potential of modified nanocrystals for the removal of aromatic organic pollutant from aqueous solution[J]. Industrial Crops & Products, 2011,33(2):350-357.
[13] 孙锦,蒋文龙,何会泉,等.淀粉纳米颗粒的制备及其作为药物载体的研究进展[J].现代化工,2018,38(2):61-65.
[14] WANG H, FENG T, ZHUANG N H, et al. Review on Patents of starch nanoparticles: Preparation, Applications, and Development[J]. Recent Pat Food Nutr Agric, 2018,9(1):23-30
[15] ALILA S, ALOULOU F, THIELEMANS W, et al. Sorption potential of modified nanocrystals for the removal of aromatic organic pollutant from aqueous solution[J]. Industrial Crops & Products, 2011,33(2):350-357.
[16] HASSAN N, ABBAS D. Convenient method for preparation of hydrophobically modified starch nanocrystals with using fatty acids[J]. Carbohydrate Polymers, 2010,79(3):731-737.
[17] ALI E H, ALARIFI A. Characterization and in vitro evaluation of starch based hydrogels as carriers for colon specific drug delivery systems[J]. Carbohydrate Polymers, 2009,78(4):725-730.
[18] MAHMOUDI NAJAFI S H, BAGHAIE M, ASHORI A. Preparation and characterization of acetylated starch nanoparticles as drug carrier: Ciprofloxacin as a model[J]. International Journal of Biological Macromolecules, 2016,87:48-54.
[19] GARCÍA N L, RIBBA L, DUFRESNE A, et al. Physico-mechanical properties of biodegradable starch nanocomposites[J]. Macromolecular Materials & Engineering, 2010, 294(3):169-177.
[20] HAAJ S, MAGNIN A, BOUFI S. Starch nanoparticles produced via ultrasonication as a sustainable stabilizer in Pickering emulsion polymerization[J]. Rsc Advances, 2014,4(80):42 638-42 646.
[21] KIM H Y, PARK S S, LIM S T. Preparation, characterization and utilization of starch nanoparticles[J]. Colloids & Surfaces B Biointerfaces, 2015,126:607-620.
[22] LIN H, QIN L Z, HONG H, et al. Preparation of Starch Nanoparticles via High-Energy Ball Milling[J]. Journal of Nano Research, 2016,40:174-179.
[23] QIN Y, LIU C, JIANG S, et al. Characterization of starch nanoparticles prepared by nanoprecipitation: Influence of amylose content and starch type[J]. Industrial Crops & Products, 2016,87:182-190.
[24] CHIN S F, PANG S C, TAY S H. Size controlled synthesis of starch nanoparticles by a simple nanoprecipitation method[J]. Carbohydrate Polymers, 2011,86(4):1 817-1 819.
[25] WU X, CHANG Y, FU Y, et al. Effects of non‐solvent and starch solution on formation of starch nanoparticles by nanoprecipitation[J]. Starch - Stärke, 2016,68(3-4):258-263.
[26] 薛丽燕. 超声波与微波协同液相均匀沉淀法制备纳米球形氧化钇[D].赣州:江西理工大学,2018.
[27] 余长林, 周晚琴, YU Jimmy C. 超声波辐射快速合成高光催化性能的BiOCl(Br)纳米片[J]. 无机化学学报, 2011, 27(10):2 033-2 038.
[28] JI G, LUO Z, XIAO Z, et al. Synthesis of starch nanoparticles in a novel microemulsion with two ILs substituting two phases[J]. Journal of Materials Science, 2016, 51(15):7 085-7 092.
[29] DENG Y, JIN Y, LUO Y, et al. Impact of continuous or cycle high hydrostatic pressure on the ultrastructure and digestibility of rice starch granules[J]. Journal of Cereal Science, 2014, 60(2):302-310.
[30] 洪静. 脉冲电场协同淀粉酯化的改性研究[D].广州:华南理工大学,2017.
[31] SUN Q, GONG M, LI Y, et al. Effect of retrogradation time on preparation and characterization of proso millet starch nanoparticles.[J]. Carbohydrate Polymers, 2014,111(20):133.
[32] LIU L, XIE J P, LI Y J, et al. Three-dimensional macroporous cellulose-based bioadsorbents for efficient removal of nickel ions from aqueous solution[J]. Cellulose, 2016,23(1):723-736.
[33] 扈佳琪,王丽.羧甲基化沙柳木粉负载纳米零价铁吸附水中Pb2+[J].精细化工,2018,35(7):1 227-1233;1 239.
[34] NEDELTCHEVA M, VALCHEVA E, BENCHEVA D I S, et al. Study of the kinetics of the adsorption of dialdehyde starch on cellulose[J]. Starch-Stärke, 2010, 33(6):195-200.
[35] GUO X, DU B, QIN W, et al. Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) from contaminated water[J]. Journal of Hazardous Materials, 2014,278:211-220.