[1] 康维民, 肖念新. 甘薯淀粉掺假的快速检测研究[J]. 食品科技, 2003,29(1):78-79.
[2] 侯汉学, 董海洲,刘传富. 甘薯淀粉中掺有玉米淀粉的检测方法[J]. 食品与发酵工业, 2010,36(1):134-137.
[3] 杜连起. 甘薯粉条掺杂异种淀粉检验方法的研究[J]. 河北职业技术师范学院学报, 2000,26(2):24-26.
[4] 陈嘉, 刘嘉,马雅钦,等. 葛粉掺假的近红外漫反射光谱快速检测[J]. 食品科学, 2014,35(8):133-136.
[5] SANS S, FERRE J, BOQUE R, et al. Determination of chemical properties in 'calcot' (Allium cepa L.) by near infrared spectroscopy and multivariate calibration[J]. Food Chemistry, 2018,262:178-183.
[6] 贾柳君, 张海红,王健,等. 采用近红外光谱定量分析葡萄酒发酵液中总酸含量和pH值[J]. 食品与发酵工业, 2017,43(2):191-195.
[7] 何佳艳, 李亭,郭长凯,等. 近红外光谱法快速无损测定奶粉的脂肪含量[J]. 食品与发酵工业, 2017,43(10):228-233.
[8] TAHIR H E, ZOU X, SHEN T, et al. Near-Infrared (NIR) spectroscopy for rapid measurement of antioxidant properties and discrimination of sudanese honeys from different botanical origin[J]. Food Analytical Methods, 2016,9(9):2 631-2 641.
[9] RIOS-REINA R, LUIS GARCIA-GONZALEZ D, MARIA CALLEJON R, et al. NIR spectroscopy and chemometrics for the typification of Spanish wine vinegars with a protected designation of origin[J]. Food Control, 2018,89:108-116.
[10] BALLABIO D, ROBOTTI E, GRISONI F, et al. Chemical profiling and multivariate data fusion methods for the identification of the botanical origin of honey[J]. Food Chemistry, 2018,266:79-89.
[11] LIU N, PARRA H A, PUSTJENS A, et al. Evaluation of portable near-infrared spectroscopy for organic milk authentication[J]. Talanta, 2018,184:128-135.
[12] 潘冰燕, 鲁晓翔,张鹏,等. 近红外光谱对甜椒果实质地的无损检测[J]. 食品与发酵工业, 2015,41(11):143-147.
[13] GHOSH S, MISHRA P, MOHAMAD S N H, et al. Discrimination of peanuts from bulk cereals and nuts by near infrared reflectance spectroscopy[J]. Biosystems Engineering, 2016,151:178-186.
[14] MEES C, SOUARD F, DELPORTE C, et al. Identification of coffee leaves using FT-NIR spectroscopy and SIMCA[J]. Talanta, 2018,177:4-11.
[15] LIU J, WEN Y, DONG N, et al. Authentication of lotus root powder adulterated with potato starch and/or sweet potato starch using Fourier transform mid-infrared spectroscopy[J]. Food Chemistry, 2013,141(3):3 103-3 109.
[16] XU L, SHI P, YE Z, et al. Rapid analysis of adulterations in Chinese lotus root powder (LRP) by near-infrared (NIR) spectroscopy coupled with chemometric class modeling techniques[J]. Food Chemistry, 2013,141(3):2 434-2 439.
[17] MAHOOD F, JABEEN F, HUSSAIN J, et al. FT-NIRS coupled with chemometric methods as a rapid alternative tool for the detection & quantification of cow milk adulteration in camel milk samples[J]. Vibrational Spectroscopy, 2017,92:245-250.
[18] LU G, HUANG H, ZHANG D. Application of near-infrared spectroscopy to predict sweetpotato starch thermal properties and noodle quality[J]. Journal of Zhejiang University Science B, 2006,7(6):475-481.
[19] DING X, NI Y, KOKOT S. NIR spectroscopy and chemometrics for the discrimination of pure, powdered, purple sweet potatoes and their samples adulterated with the white sweet potato flour[J]. Chemometrics and Intelligent Laboratory Systems, 2015,144:17-23.
[20] CHUANG C C, SU S F, JENG J T, et al. Robust support vector regression networks for function approximation with outliers[J]. IEEE Transactions on Neural Networks, 2002,13(6):1 322-1 330.
[21] 张丽华, 郝莉花,李顺峰,等. 基于支持向量机的近红外光谱技术快速鉴别掺假羊肉[J]. 食品工业科技, 2015,36(23):289-293.
[22] PIERNA J, VOLERY P, BESSON R, et al. Classification of modified starches by Fourier transform infrared spectroscopy using support vector machines[J]. Journal of Agricultural and Food Chemistry, 2005,53(17):6 581-6 585.
[23] CHEN J, ZHU S, ZHAO G. Rapid determination of total protein and wet gluten in commercial wheat flour using siSVR-NIR[J]. Food Chemistry, 2017,221:1 939-1 946.
[24] 褚小立, 袁洪福,陆婉珍. 近红外分析中光谱预处理及波长选择方法进展与应用[J]. 化学进展, 2004,16(4):528-542.
[25] CHANG C, LIN C. LIBSVM: A library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011,2(3):1-27.
[26] FILGUEIRAS P R, ALVES J C L, POPPI R J. Quantification of animal fat biodiesel in soybean biodiesel and B20 diesel blends using near infrared spectroscopy and synergy interval support vector regression[J]. Talanta, 2014,119:582-589.
[27] 邹婷婷, 窦英,王莹,等. 近红外光谱法结合C-SVM及v-SVM方法快速无损鉴别淀粉种类[J]. 食品工业科技, 2013,34(17):317-319.
[28] CHEN J, YE F, ZHAO G. Rapid determination of farinograph parameters of wheat flour using data fusion and a forward interval variable selection algorithm[J]. Analytical Methods, 2017,9(45):6 341-6 348.
[29] RANZAN C, TRIERWEILER L F, HITZMANN B, et al. NIR pre-selection data using modified changeable size moving window partial least squares and pure spectral chemometrical modeling with ant colony optimization for wheat flour characterization[J]. Chemometrics and Intelligent Laboratory Systems, 2015,142:78-86.
[30] CHUANG C C, JENG J T, TAO C W. Two-Stages support vector regression for fuzzy neural networks with outliers[J]. International Journal of Fuzzy Systems, 2009,11(1):20-28.
[31] SHAO Y, CEN Y, HE Y, et al. Infrared spectroscopy and chemometrics for the starch and protein prediction in irradiated rice[J]. Food Chemistry, 2011,126(4):1 856-1 861.
[32] LIN C, CHEN X, JIAN L, et al. Determination of grain protein content by near-infrared spectrometry and multivariate calibration in barley[J]. Food Chemistry, 2014,162:10-15.
[33] AL-MBAIDEEN A, BENAISSA M. Frequency self deconvolution in the quantitative analysis of near infrared spectra[J]. Analytica Chimica Acta, 2011,705(1-2):135-147.
[34] WU F, MENG Y, YANG N, et al. Effects of mung bean starch on quality of rice noodles made by direct dry flour extrusion[J]. LWT-Food Science and Technology, 2015,63(2):1 199-1 205.
[35] PHOTINAM R, MOONGNGARM A, PASEEPHOL T. Process optimization to increase resistant starch in vermicelli prepared from mung bean and cowpea starch[J]. Emirates Journal of Food and Agriculture, 2016,28(7):449-458.