综述与专题评论

人造肉大规模生产的商品化技术

  • 赵鑫锐 ,
  • 张国强 ,
  • 李雪良 ,
  • 孙秀兰 ,
  • 周景文 ,
  • 堵国成 ,
  • 陈坚
展开
  • 1(江南大学 生物工程学院,江苏 无锡,214122)
    2(粮食发酵工艺与技术国家工程实验室(江南大学),江苏 无锡,214122)
    3(江南大学 食品学院,江苏 无锡,214122)

收稿日期: 2019-04-16

  网络出版日期: 2019-07-08

基金资助

国家重点研发计划(2017YFC1600403)

Commercial production of artificial meat

  • ZHAO Xinrui ,
  • ZHANG Guoqiang ,
  • Li Xueliang ,
  • SUN Xiulan ,
  • ZHOU Jingwen ,
  • DU Guocheng ,
  • CHEN Jian
Expand
  • 1(School of Biotechnology, Jiangnan University, Wuxi 214122, China)
    2(National Engineering Laboratory of Cereal Fermentation Technology(Jiangnan University), Wuxi 214122, China)
    3(School of Food Science and Technology, Jiangnan University, Wuxi 214122, China)

Received date: 2019-04-16

  Online published: 2019-07-08

摘要

近年来随着人们对健康、环保及美味食品的追求,我国肉类农产品的供求出现了严重的不平衡。因此,以细胞工厂为基础的人造肉将成为未来农产品生产的发展趋势。虽然目前利用细胞培养已经可以获得一定量的动物肌肉组织,但相关产品的市场认可度还很低。根本原因是现阶段人造肉制品还无法逼真模拟真肉的品质。要想生产符合大众需求的人造肉制品,必须要对人造肉制品进行一系列的商品化加工和重塑成型处理。目前最新的研究成果已经可以通过添加合成的血红蛋白、香味物质等食品添加剂,优化肉制品中各组分的比例和3D打印技术初步实现人造肉制品的商品化。基于此,本文总结了国内外可以用于人造肉制品商品化的技术和相关研究进展,为实现人造肉制品大规模的市场化生产提供参考。

本文引用格式

赵鑫锐 , 张国强 , 李雪良 , 孙秀兰 , 周景文 , 堵国成 , 陈坚 . 人造肉大规模生产的商品化技术[J]. 食品与发酵工业, 2019 , 45(11) : 248 -253 . DOI: 10.13995/j.cnki.11-1802/ts.020859

Abstract

In recent years, with increasing requirements of healthy, environmental and delicious foods, there is a serious imbalance between supply and demand of meat in China. Thus, based on promising cell factories, artificial meat will become a trend of future agricultural products. Although a certain amount of animal muscle has been obtained by cell culture, the market acceptance of related products is still very low. The main reason is artificial meat cannot realistically simulate the quality of real meat. In order to produce commercial products of artificial meat that can satisfy the public, synthetic food additives (hemoglobin and aroma substances etc.), and a series of food processing and 3D-printing treatments must be carried out. In this review, the domestic and foreign technologies that can be used for commercializing artificial meat and the latest progress of these technologies were summarized to pave the way for future large-scale production of artificial meat products.

参考文献

[1] 辛良杰, 李鹏辉, 范玉枝. 中国食物消费随人口结构变化分析[J]. 农业工程学报, 2018, 34(14): 296-302.
[2] ORZECHOWSKI A. Artificial meat? Feasible approach based on the experience from cell culture studies[J]. Journal of Integrative Agriculture, 2015, 14(2): 217-221.
[3] POST M J. Cultured meat from stem cells: Challenges and prospects[J]. Meat Science, 2012, 92(3): 297-301.
[4] BHAT Z F, KUMAR S, FAYAZ H. In vitro meat production: Challenges and benefits over conventional meat production[J]. Journal of Integrative Agriculture, 2015, 14(2): 241-248.
[5] TUOMISTO H L, DE MATTOS M J T. Environmental impacts of cultured meat production[J]. Environmental Science & Technology, 2011, 45(14): 6 117-6 123.
[6] ESHEL G, SHEPON A, MAKOV T, et al. Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(33): 11 996-12 001.
[7] BRAINARD J. Agencies carve up cultured meat[J]. Science, 2018, 362(6 418): 977.
[8] BOHM I, FERRARI A, WOLL S. Visions of in vitro meat among experts and stakeholders[J]. Nanoethics, 2018, 12(3): 211-224.
[9] ZHANG X X, TAN J P, XU X X, et al. A coordination polymer based magnetic adsorbent material for hemoglobin isolation from human whole blood, highly selective and recoverable[J]. Journal of Solid State Chemistry, 2017, 253: 219-226.
[10] LAYER G, REICHELT J, JAHN D, et al. Structure and function of enzymes in heme biosynthesis[J]. Protein Science, 2010, 19(6): 1 137-1 161.
[11] PRANAWIDJAJA S, CHOI S I, LAY B W, et al. Analysis of heme biosynthetic pathways in a recombinant Escherichia coli[J]. Journal of Microbiology and Biotechnology, 2015, 25(6): 880-886.
[12] ANZALDI L L, SKAAR E P. Overcoming the heme paradox: Heme toxicity and tolerance in bacterial pathogens[J]. Infection and Immunity, 2010, 78(12): 4 977-4 989.
[13] ZHAO X R, CHOI K R, LEE S Y. Metabolic engineering of Escherichia coli for secretory production of free haem[J]. Nature Catalysis, 2018, 1(9): 720-728.
[14] NATARAJAN C, JIANG X B, FAGO A, et al. Expression and purification of recombinant hemoglobin in Escherichia coli[J]. PloS One, 2011, 6(5).
[15] LIU L F, MARTINEZ J L, LIU Z H, et al. Balanced globin protein expression and heme biosynthesis improve production of human hemoglobin in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2014, 21: 9-16.
[16] MARTINEZ J L, LIU L F, PETRANOVIC D, et al. Engineering the oxygen sensing regulation results in an enhanced recombinant human hemoglobin production by Saccharomyces cerevisiae[J]. Biotechnology and Bioengineering, 2015, 112(1): 181-188.
[17] JIN Y, HE X Y, ANDOH-KUMI K, et al. Evaluating potential risks of food allergy and toxicity of soy leghemoglobin expressed in Pichia pastoris[J]. Molecular Nutrition & Food Research, 2018, 62(1): 1 700 297.
[18] 张谦益, 臧勇军, 吴洪华, 等. GC/MS法分析牛肉酶解物衍生肉香风味的化学成分[J]. 农产品加工(学刊), 2006(2): 19-21.
[19] YU L G, GAO C, ZENG M M, et al. Effects of raw meat and process procedure on N-epsilon-carboxymethyllysine and N-epsilon-carboxyethyl-lysine formation in meat products[J]. Food Science and Biotechnology, 2016, 25(4): 1 163-1 168.
[20] 刘源, 徐幸莲, 王锡昌, 等. 脂肪对鸭肉风味作用研究[J]. 中国食品学报, 2009, 9(1): 95-100.
[21] VARGAS-BELLO-PEREZ E, LARRAIN R E. Impacts of fat from ruminants' meat on cardiovascular health and possible strategies to alter its lipid composition[J]. Journal of the Science of Food and Agriculture, 2017, 97(7): 1 969-1 978.
[22] RASINSKA E, CZARNIECKA-SKUBINA E, RUTKOWSKA J, et al. Fatty acid profile of meat of seasonally fed slow-growing rabbits[J]. Animal Science Papers and Reports, 2017, 35(3): 265-277.
[23] 杨宓. 啤酒酵母的酶解及猪肉香精的制备[D]. 南京:南京林业大学, 2013.
[24] 沈军卫. 大豆蛋白酶解物制备猪肉香精的研究[D]. 洛阳:河南科技大学, 2010.
[25] 曾茂茂, 李伶俐, 何志勇, 等. 甘氨酸对美拉德反应体系及产生肉香风味物质的影响[J]. 食品科学, 2012, 33(7): 32-36.
[26] YANG C, SONG H L, CHEN F, et al. Response surface methodology for meat-like odorants from the maillard reaction with glutathione Ⅱ: The tendencies analysis of meat-like donors[J]. Journal of Food Science, 2011, 76(9): C1 267-C1 277.
[27] 高应瑞. 毕赤酵母表达风味强化肽呈味研究[D]. 天津:天津科技大学, 2011.
[28] 孙娇娇. 花生油脂代谢关键基因在酵母和聚球藻中表达及功能验证[D]. 哈尔滨:哈尔滨工业大学, 2014.
[29] POLI J S, DA SILVA M A N, SIQUEIRA E P, et al. Microbial lipid produced by Yarrowia lipolytica QU21 using industrial waste: A potential feedstock for biodiesel production[J]. Bioresource Technology, 2014, 161: 320-326.
[30] LAZAR Z, LIU N, STEPHANOPOULOS G. Holistic approaches in lipid production by Yarrowia lipolytica[J]. Trends in Biotechnology, 2018, 36(11): 1 157-1 170.
[31] YOOK S D, KIM J, WOO H M, et al. Efficient lipid extraction from the oleaginous yeast Yarrowia lipolytica using switchable solvents[J]. Renewable Energy, 2019, 132: 61-67.
[32] 孙晓明, 张佳程, 卢凌, 等. 牛胴体部位肉营养成分和理化指标差异性分析[J]. 中国畜牧兽医, 2011, 38(2): 205-208.
[33] PEREZ I M N, BADARO A T, BARBON S, et al. Classification of chicken parts using a portable near-infrared (NIR) spectrophotometer and machine learning[J]. Applied Spectroscopy, 2018, 72(12): 1 774-1 780.
[34] 孙晓明, 卢凌, 张佳程, 等. 牛肉化学成分的近红外光谱检测方法的研究[J]. 光谱学与光谱分析, 2011, 31(2): 379-383.
[35] ZOU Y, ZHANG K, ZHANG X X, et al. Optimization of goose breast meat tenderness by rapid ultrasound treatment using response surface methodology and artificial neural network[J]. Animal Science Journal, 2018, 89(9): 1 339-1 347.
[36] BARBON S, BARBON A P A D, MANTOVANI R G, et al. Machine learning applied to near-infrared spectra for chicken meat classification[J]. Journal of Spectroscopy, 2018:8 949 741.
[37] GODOI F C, PRAKASH S, BHANDARI B R. 3d printing technologies applied for food design: Status and prospects[J]. Journal of Food Engineering, 2016, 179: 44-54.
[38] 周涛, 徐书洁, 杨继全. 3D食品打印技术研究的最新进展[J]. 食品工业, 2016, 37(12): 208-212.
[39] 郑少京, 吕志强. 主导3D打印技术的关键-3D建模[J]. 办公自动化, 2015(14): 61-62.
[40] GUNTHER D, HEYMEL B, GUNTHER J F, et al. Continuous 3D-printing for additive manufacturing[J]. Rapid Prototyping Journal, 2014, 20(4): 320-327.
[41] ATTALLA R, PUERSTEN E, JAIN N, et al. 3D bioprinting of heterogeneous bi- and tri-layered hollow channels within gel scaffolds using scalable multi-axial microfluidic extrusion nozzle[J]. Biofabrication, 2018, 11(1): 015 012.
[42] SANG L Y, ZHOU X H, YUN F, et al. Enzymatic synthesis of chitosan-gelatin antimicrobial copolymer and its characterisation[J]. Journal of the Science of Food and Agriculture, 2010, 90(1): 58-64.
[43] LUEDERS C, JASTRAM B, HETZER R, et al. Rapid manufacturing techniques for the tissue engineering of human heart valves[J]. European Journal of Cardio-Thoracic Surgery, 2014, 46(4): 593-601.
[44] SARATTI C M, ROCCA G T, KREJCI I. The potential of three-dimensional printing technologies to unlock the development of new 'bio-inspired' dental materials: an overview and research roadmap[J]. Journal of Prosthodontic Research, 2019, 63(2): 131-139.
文章导航

/