[1] WENG Chiajui, YEN Gowchin. Chemo preventive effects of dietary phytochemicals against cancer invasion and metastasis: phenolic acids, monophenol, polyphenol, and their derivatives[J]. Cancer Treatment Reviews, 2012, 38: 76-87.
[2] LUO Wei, XIAO Gao, TIAN Fan, et al. Engineering robust metal-phenolic network membranes for uranium extraction from seawater[J]. Energy & Environmental Science, 2019, DOI: 10.1039/c8ee01438h.
[3] GUO Junling, PING Yuan, EJIMA H, et al. Engineering multifunctional capsules through the assembly of metal-phenolic networks[J]. Angewandte Chemie, 2014, 126(22): 5 652-5 657.
[4] 石碧, 狄莹. 植物多酚[M]. 北京: 中国科学技术出版社, 2000.
[5] KASPCHAK E, MAFRA L I, MAFRA M R. Effect of heating and ionic strength on the interaction of bovine serum albumin and the antinutrients tannic and phytic acids, and its influence on in vitro protein digestibility[J]. Food Chemistry, 2018, 252: 1-8.
[6] AL-SHABIB N A, KHAN J M, MALIK A, et al. Molecular insight into binding behavior of polyphenol (rutin) with beta lactoglobulin: Spectroscopic, molecular docking and MD simulation studies[J]. Journal of Molecular Liquids, 2018, 269: 511-520.
[7] GUO Nihong, WANG Cailian, SHANG Chao, et al. Integrated study of the mechanism of tyrosinase inhibition by baicalein using kinetic, multispectroscopic and computational simulation analyses[J]. International Journal of Biological Macromolecules, 2018, 118: 57-68.
[8] PRODPRAN T, BENJAKUL S, PHATECHARAT S. Effect of phenolic compounds on protein cross-linking and properties of film from fish myofibrillar protein[J]. International Journal of Biological Macromolecules, 2012, 51: 774-782.
[9] SUI Xiaonan, SUN Hongbo, QI Baokun, et al. Functional and conformational changes to soy proteins accompanying anthocyanins: Focus on covalent and non-covalent interactions[J]. Food Chemistry, 2018, 245: 871-878.
[10] ASANO K, SHINAGAGAWA K, HASHIMOTO N. Characterization of haze-forming proteins of beer and their roles in chill haze formation[J]. Journal of the American Society of Brewing Chemists, 1982, 40: 147-154.
[11] JAKOBEK L. Interactions of polyphenols with carbohydrates, lipids and proteins[J]. Food Chemistry, 2015, 175: 556-567.
[12] ISHII T, MORI T, TANAKA T, et al. Covalent modification of proteins by green tea polyphenol (-)-epigallocatechin-3-gallate through autoxidation[J]. Free Radical Biology and Medicine, 2008, 45: 1 384-1 394.
[13] JALDAPPAGARI S, BALAKRISHNAN S, HEGDE A H, et al. Interactions of polyphenols with plasma proteins: insights from analytical techniques[J]. Current Drug Metabolism, 2013, 14: 456-473.
[14] XIAO Jianbo, KAI Guoyin. A review of dietary polyphenol-plasma protein interactions: characterization, influence on the bioactivity, and structure-affinity relationship[J]. Food Science and Nutrition, 2012, 52: 85-101.
[15] 姜涌明, 罗贵民, 李惟, 等. 蛋白质分子基础(第二版) [M]. 北京: 人民教育出版社, 1982.
[16] JIA Jingjing, GAO Xin, HAO Minghao, et al. Comparison of binding interaction between β-lactoglobulin and three common polyphenols using multi-spectroscopy and modeling methods[J]. Food Chemistry, 2017, 228: 143-151.
[17] KONG Jilie, YU Shaoning. Fourier transform infrared spectroscopic analysis of protein secondary structures[J]. Acta Biochimica et Biophysica Sinica, 2007, 39(8): 549-559.
[18] BYLER D M, BROUILLETTE J N, SUS H. Quantitative studies of protein structure by FT-IR spectra deconvolution and curve-fitting[J]. Spectroscopy, 1986, 1(3): 29-32.
[19] ZOU Yuan, GUO Jian, YIN Shouwei, et al. Pickering emulsion gels prepared by hydrogen-bonded zein/tannic acid complex colloidal particles[J]. Journal of Agriculture and Food Chemistry, 2015, 63(33): 7 405-7 414.
[20] ZHOU Changyan, ZHANG Huiping, YAN Ying, et al. 17O NMR and raman spectroscopies of green tea infusion with nanomaterial to investigate their properties[J]. Journal of Aoac International, 2016, 99(5): 1 377-1 380.
[21] LIU Fuguo, MA Da, LUO Xiang, et al. Fabrication and characterization of protein-phenolic conjugate nanoparticles for co-delivery of curcumin and resveratrol[J]. Food Hydrocolloids, 2018, 79: 450-461.
[22] XU Lihui, TU Sidong, CHEN Congheng, et al. Effect of EGCG on Fe(III)-induced conformational transition of silk fibroin, a model of protein related to neurodegenerative diseases[J]. Biopolymers, 2016, 105(2): 100-107.
[23] ULRIH N P. Analytical techniques for the study of polyphenol-protein interactions[J]. Critical Reviews in Food Science and Nutrition, 2017, 57(10): 2 144-2 161.
[24] YAO Han, WYNENDAELE E, XU Xiaolong, et al. Circular dichroism in functional quality evaluation of medicines[J]. Journal of Pharmaceutical and Biomedical Analysis, 2018, 147: 50-64.
[25] TANG Jianhong, LIAN Ning. Simple and sensitive spectrofluorometric method for the determination of protein using an europium-thenoyl-trifluoroacetone probe[J]. Analytical Science, 2009, 25: 1 237-1 242.
[26] ALULA M T, MENGESHA Z T, MWENESONGOLE E, Advances in surface-enhanced Raman spectroscopy for analysis of pharmaceuticals: A review[J]. Vibrational Spectroscopy, 2018, 98: 50-63.
[27] MURRAY N J, WILLIAMSON M P, LILLEY T H, et al. Study of the interaction between salivary proline-rich proteins and a polyphenol by 1H-NMR spectroscopy[J]. European Journal of Biochemistry, 1994, 219: 923-935.
[28] SIMARD J R, ZUNSZAIN P A, BHAGAVAN N V, et al. Locating high-affinity fatty acid-binding sites on albumin by x-ray crystallography and NMR spectroscopy[J]. Proceedings of the National Academy of Sciences, 2005, 102(179): 58-63.
[29] DELIUS J, FRANK O, HOFMANN T. Label-free quantitative 1H NMR spectroscopy to study low-affinity ligand-protein interactions in solution: A contribution to the mechanism of polyphenol-mediated astringency[J]. Plos One, 2017, 12(9): e0184487.
[30] 樊艳华. 表面等离子共振技术和荧光光谱法研究生物分子相互作用[D]. 太原: 山西大学, 2011.
[31] CANOA P, RIVADULLA M L, POPPLEWELL J, et al. Use of surface plasmon resonance in the binding study of vitamin D, metabolites and analogues with vitamin D binding protein[J]. Analytical & Bioanalytical Chemistry, 2017, 409(10): 2 547-2 558.
[32] KHANSILI N, RATTU G, KRISHNA P M. Label-free optical biosensors for food and biological sensor applications[J]. Sensors & Actuators B Chemical, 2018, 265: 35-49.
[33] PARK J Y, YUK H J, RYU H W, et al. Evaluation of polyphenols from Broussonetia papyriferaas coronavirus protease inhibitors[J]. Journal of Enzyme Inhibition & Medicinal Chemistry, 2017, 32(1): 504-512.
[34] SABOURY A A. A review on the ligand binding studies by isothermal titration calorimetry[J]. Journal of the Iranian Chemical Society, 2006, 3(1): 1-21.
[35] FARAH J S, SILVA M C, CRUZ A G, et al. Differential calorimetry scanning: current background and application in authenticity of dairy products[J]. Current Opinion in Food Science, 2018, 22: 88-94.
[36] SUN Lijun, GIDLEY M J, WARREN F J. The mechanism of interactions between tea polyphenols and porcine pancreatic alpha-amylase: Analysis by inhibition kinetics, fluorescence quenching, differential scanning calorimetry and isothermal titration calorimetry[J]. Molecular Nutrition and Food Research, 2017, 61(10): 1-13.
[37] BINNIG G, QUATE C F, GERBER C. Atomic force microscope[J]. Physical Review Letters, 1986, 56: 930-933.
[38] 张曼, 王岸娜, 吴立根, 等. 蛋白质、多糖和多酚间相互作用及研究方法[J]. 粮食与油脂, 2015, 28(4): 42-46.
[39] SUN Cuixia, XU Chenqi, MAO Like, et al. Preparation, characterization and stability of curcumin-loaded zein-shellac composite colloidal particles[J]. Food Chemistry, 2017, 228: 656-667.
[40] 刘淑萍. 现代仪器分析方法及应用[M]. 北京: 中国质检出版社, 2013.
[41] SNEDDON G C, TRIMBY P W, CAIRNEY J M. Transmission Kikuchi diffraction in a scanning electron microscope: A review[J]. Materials Science & Engineering R Reports, 2016, 110: 1-12.
[42] 刘海学. 现代仪器分析技术[M]. 北京: 中国农业出版社, 2011.
[43] MERSON E, DANILOV V, MERSON D, et al. Confocal laser scanning microscopy: The technique for quantitative fractographic analysis[J]. Engineering Fracture Mechanics, 2017, 183: 147-158.
[44] PYGALL S R, WHETSTONE J, TIMMINS P, et al. Pharmaceutical applications of confocal laser scanning microscopy: the physical characterisation of pharmaceutical systems[J]. Advanced Drug Delivery Reviews, 2007, 59(14): 1 434-1 452.
[45] 庄绪静, 曹雅忠, 李克斌, 等. 同源建模和分子对接方法的应用与发展[C]. 中国植物保护学会2011年学术年会,2011.
[46] GUPTA M, SHARMA R, SINGH M, et al. Docking techniques in pharmacology: How much promising?[J]. Computational Biology and Chemistry, 2018, 76: 210-217.
[47] LI Ti, HU Peng, DAI Taotao, et al. Comparing the binding interaction between β-lactoglobulin and flavonoids with different structure by multi-spectroscopy analysis and molecular docking[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2018, 201: 197-206.
[48] HOLLINGSWORTH, SCOTT A D, RON O, Molecular dynamics simulation for all[J]. Neuron, 2018, 99(6): 1 129-1 143.
[49] MITSUTAKE A, TAKANO H. Relaxation mode analysis for molecular dynamics simulations of proteins[J]. Biophysical Reviews, 2018, 10(2): 375-389.
[50] ZHANG Jingxiao, ZHANG Lilei, XU Yangcheng, et al. Deciphering the binding behavior of flavonoids to the cyclin dependent kinase 6/cyclin D complex[J]. PLoS One, 2018, 13(5): 1-18