研究报告

圆弧青霉发酵右旋糖酐酶过程动力学模型的建立

  • 黄瑞杰 ,
  • 蓝平 ,
  • 钟磊 ,
  • 覃琴 ,
  • 蓝丽红 ,
  • 韦佳蔓 ,
  • 廖安平 ,
  • 李媚
展开
  • 广西民族大学 化学化工学院,广西多糖材料及改性重点实验室广西民族大学,广西 南宁,530006
硕士研究生(廖安平教授和李媚教授为共同通讯作者,E-mail:gxanping@sina.com,meili@gxun.edu.cn)

收稿日期: 2018-11-29

  网络出版日期: 2019-08-20

基金资助

广西生物多糖分离纯化及改性研究平台建设项目(桂科ZY18076005)(广西民族大学);广西民族大学研究生教育创新计划项目(gxun-chxzs2017129);广西民族大学大学生创新创业训练计划项目(201710608085)

Establishment of kinetic models for dextranase fermentation by Penicillium cyclopium

  • HUANG Ruijie ,
  • LAN Ping ,
  • ZHONG Lei ,
  • QIN Qin ,
  • LAN Lihong ,
  • WEI Jiaman ,
  • LIAO Anping ,
  • LI Mei
Expand
  • Guangxi Key Laboratory for Polysaccharide Materials and Modifications Guangxi University for Nationalities, School of Chemistry and Chemical Engineering,Guangxi University for Nationalities,Nanning 530006, China

Received date: 2018-11-29

  Online published: 2019-08-20

摘要

为了研究圆弧青霉发酵生成右旋糖酐酶的过程及动力学,测定发酵过程的菌体质量浓度、右旋糖酐酶酶活以及总糖(底物)质量浓度随时间的变化,分别采用Logistic方程、Luedeking-Piret方程和类Luedeking-Piret方程对实验数据进行非线性拟合,获得了圆弧青霉菌菌体生长、右旋糖酐酶生成和底物消耗的动力学模型,相关系数R2分别为0.994、0.992、0.991。对获得的动力学模型进行分析,计算值与实验值的误差合理,所建立的发酵动力学模型能较好地反映出圆弧青霉菌发酵产右旋糖酐酶的过程,为控制和预测发酵过程提供了理论基础。

本文引用格式

黄瑞杰 , 蓝平 , 钟磊 , 覃琴 , 蓝丽红 , 韦佳蔓 , 廖安平 , 李媚 . 圆弧青霉发酵右旋糖酐酶过程动力学模型的建立[J]. 食品与发酵工业, 2019 , 45(14) : 57 -62 . DOI: 10.13995/j.cnki.11-1802/ts.019487

Abstract

In order to study the process and kinetics of dextranase production by Penicillium cyclopium, changes in cell density, dextranase activity and total sugar along fermentation time were measured. Logistic equation, Luedeking-piret equation and Luedeking-piret-like equation were used to arrange the experimental data to obtain kinetic models of cell growth (R2=0.994), dextranase synthesis (R2=0.992) and substrate consumption (R2=0.991), respectively. All established kinetic models had reasonable errors between calculated values and experimental values, therefore, they can reflect the fermentation process of Penicillum. cyclopium in a better way to produce dextranase, which provides a theoretical basis for controlling and predicting the fermentation process.

参考文献

[1] BASHARI M, EIBAID A, WANG J P, et al. Influence of low ultrasound intensity on the degradation of dextran catalyzed by dextranas[J].Ultrasonics Sonochemistry, 2013,20(1):155-161.
[2] GOULAS A K, FISHER D A, GRIMBER G K, et al. Synthesis of isomaltooligosaccharides and oligodextrans by the combined use of dextransucrase and dextranase[J].Enzyme and Microbial Technology, 2004,35(4):327-338.
[3] LI Kai, LU Haiqin, HANG Fangxue, et al. Improved dextranase production by chaetomium gracile, through optimization of carbon source and fermentation parameters[J].Sugar Tech,2017,19(4):432-437.
[4] REN Wei, CAI Ruanhong, YAN Wanli, et al. Purification and characterization of a biofilm-degradable dextranase from a marine bacterium[J].Marine Drugs, 2018,16(2):51.
[5] SHAHID F, AMAN A, NAWAZ M A, et al. Chitosan hydrogel microspheres: A effective covalent matrix for crosslinking of soluble dextranase to increase stability and recycling efficiency[J].Bioprocess and Biosystems Engineering, 2017,40(3):451-461.
[6] 常国炜, 林荣珍,曾练强,等. 右旋糖酐酸解与酶解产物比较[J].甘蔗糖业,2012(6):33-38.
[7] WANG Xiaobei, LU Mingsheng, WANG Shujun, et al. The atmospheric and room-temperature plasma (ARTP) method on the dextranase activity and structure[J].International Journal of Biological Macromolecules, 2014,70(8):284-291.
[8] 张宇琪, 张洪斌,甘微苇,等. 右旋糖酐酶研究进展[J].生物工程学报,2015,31(5):634-647.
[9] CAI Ruanhong, LU Mingsheng, FANG Yaowei, et al. Screening, production, and characterization of dextranase from Catenovulum sp.[J].Annals of Microbiology, 2014, 64(1):147-155.
[10] 曹研研, 张洪斌,李若菡,等. 棘孢青霉菌发酵产右旋糖酐酶的条件优化[J].食品科学,2015,36(23):215-220.
[11] 朱慧霞, 王雅洁,邓胜松,等. 绳状青霉菌发酵产右旋糖酐酶的条件研究[J].食品科学, 2010,31(19):288-291.
[12] ZHANG Zedong, LIU Jidong, MA Shaoying, et al. Enhancement of catalytic performance of α-dextranase from Caetomium gracile through optimization and suitable shear force[J].Sugar Tech,2017,20(1):78-87.
[13] ZOHRA R R, AMAN A, ANSARI A, et al. Purification, characterization and end product analysis of dextran degrading endodextranase from Bacillus licheniformis KIBGE-IB25[J].International Journal of Biological Macromolecules, 2015,78:243-248.
[14] WANG Xiaobei, CHENG Huaixu, LU Mingsheng, et al. Dextranase from Arthrobacter oxydans KQ11-1 inhibits biofilm formation by polysaccharide hydrolysis[J].Biofouling,2016,32(10):1 223-1 233.
[15] ZHANG Yuqi, LI Ruohan, ZHANG Hongbin, et al. Purification, characterization, and application of a thermostable dextranase from Talaromyces pinophilus [J].Journal of Industrial Microbiology and Biotechnology, 2017, 44(2):317-327.
[16] NETSOPA S, NIAMSANIT S, ARAKI T, et al. Purification andcharacterization including dextran hydrolysis of dextranase from Aspergillus allahabadii X26[J].Sugar Tech,2019,21(2):329-340.
[17] SUFIATE B L, SOARES F E F, MOREIRA S S, et al.In vitro and in silico characterization of a novel dextranase from Pochonia chlamydosporia[J].3 Biotech, 2018, 8(3):1-9.
[18] 李媚, 曾平,袁宇,等. 肠膜明串珠菌CICC-21725产右旋糖酐的发酵动力学[J].科学技术与工程, 2016, 16(26):28-33.
[19] BASHARI M, JIN Zhengyu, WANG Jinpeng, et al. A novel technique to improve the biodegradation efficiency of dextranase enzyme using the synergistic effects of ultrasound combined with microwave shock[J].Innovative Food Science and Emerging Technologies, 2016,35:125-132.
[20] 张红, 王腾,李翠清. 响应面分析优化蒽酮-硫酸法测定桑叶中多糖的含量[J].食品工业科技,2012,33(24):62-65.
[21] 梁明征. 生物合成右旋糖酐及分子量调控[D].南宁:广西民族大学,2012.
[22] 王德龙. 海洋微生物右旋糖苷酶的发酵和纯化研究[D].南京:南京农业大学,2014.
[23] 郑丽雪, 王立梅,梅艳珍,等. 酿酒酵母生产谷胱甘肽分批发酵动力学研究[J].食品科学,2011, 32(1):158-161.
[24] 张凯丽, 郑晗青,牛启启,等. 酿酒酵母工程菌分批发酵产UMP动力学模型[J].食品工业科技,2015,36(9):158-161.
[25] 张琴. 粪产碱杆菌在不同碳源下发酵生产凝胶多糖的动力学研究[D].上海:华东理工大学,2018.
文章导航

/