该文探索微波间歇处理在保持麻辣鸡块初始品质与延长保质期之间的平衡能力。采用不同间歇次数的微波处理(0次:微波连续处理60 s;1次:微波两次处理各30 s,并间隔20 min;2次:微波3次处理各20 s,并2次间隔各15 min),对麻辣鸡块进行菌落总数、水分含量、质构、非蛋白氮(nonprotein nitrogen, NPN)、pH、硫代巴比妥酸(thiobarbituric acid, TBA)、挥发性盐基氮(total volatile basic nitrogen, TVB-N)、感官的测定,研究麻辣鸡块品质的变化。在总微波处理时间相同(60 s)、微波频率2 450 MHz下,微波间歇次数越多,麻辣鸡块初始品质越好,但相应的杀菌效果越差、保质期缩短。与微波间歇0次和2次相比,间歇1次能更好地保持鸡肉水分含量、质构特性,有效抑制NPN含量、pH值、TBA值、菌落总数的上升,维持贮藏期前24 d感官品质最好。在4 ℃环境下,微波间歇1次可在延长保质期的同时更好地维持麻辣鸡块的初始品质。
This study explored the effects of microwave intermittent treatment on the initial quality and shelf-life of spicy chicken nuggets. The nuggets were microwaved with different intermittent times (0 time: 60 s-on, 1 time: 30 s-on/20 min-off/30 s-on, 2 times: 20 s-on/15 min-off/20 s-on/15 min-off/20 s-on), and quality changes in the nuggets were determined by measuring total number of colony, moisture content, texture, nonprotein nitrogen (NPN), pH, thiobarbituric acid (TBA), TVB-N and sensory quality. The results showed that when microwaved for 60 s at 2 450 MHz, more intermittent times gave the spicy chicken nuggets better initial quality, however, the sterilization effect was worse and therefore had shorter shelf life. Compared against continuous microwaving and microwaving with twice intermittent, microwaved with one intermittent could better maintain the moisture content and texture characteristics of the nuggets and effectively inhibited increases in NPN content, pH value, TBA value, and total number of colony. Additionally, the sensory quality was the best during the first 24 d of shelf life. In conclusion, microwaving with one intermittent can better maintain the initial quality and prolong the shelf life of spicy chicken nuggets at 4 ℃.
[1] TANG Juming. Unlocking potentials of microwaves for food safety and quality[J]. Journal of Food Science, 2015, 80(8):E1 776-E1 793.
[2] 唐彬, 李大虎,折弯弯,等. 微波间歇处理对卤制猪肉保鲜效果的影响[J]. 食品与发酵工业, 2017, 43(11): 191-196.
[3] BIRCAN C,BARRINGER S A. Determination of protein denaturation of muscle foods using the dielectric properties[J]. Journal of Food Science, 2002, 67(1): 202-205.
[4] SCHUBERT H, REGIER M. 食品微波加工技术[M]. 徐树来,郑先哲,译. 北京:中国轻工业出版社, 2008: 17-23.
[5] MUDGETT R E. Dielectric Properties of Foods[M]. New York: Academic Press, 1985.
[6] KUMAR C, JOARDDER M U H, FARRELL T W, et al. Multiphase porous media model for intermittent microwave convective drying (IMCD) of food[J]. International Journal of Thermal Sciences, 2016, 104: 304-314.
[7] DEHGHANNYA J, FARSHAD P, KHAKBAZ H M. Three-stage hybrid osmotic-intermittent microwave-convective drying of apple at low temperature and short time[J]. Drying Technology, 2018,36(16): 1 982-2 005.
[8] AGHILINATEGH N, RAFIEE S, HOSSEINPOUR S, et al. Optimization of intermittent microwave-convective drying using response surface methodology[J]. Food Science & Nutrition, 2015, 3(4): 331-341.
[9] 唐彬, 靳苗苗,张洪翠,等. 微波处理及其非热效应对麻辣鸡块品质的影响[J]. 食品与发酵工业,2018,44(12):200-201.
[10] 唐彬, 李大虎,折弯弯,等. 间歇微波复合热处理对卤制猪肉保鲜品质的影响[J]. 食品与发酵工业, 2017, 43(10): 150-156.
[11] 魏健. 熏马肉煮制熟化及贮藏期品质变化的研究[D]. 乌鲁木齐:新疆农业大学, 2016.
[12] 郝宝瑞, 张顺亮,张坤生,等. 干腌和湿腌对清酱肉理化及感官特性的影响[J]. 食品工业科技, 2014, 35(17): 57-61.
[13] 杨玉红. 微波杀菌技术及其在肉品工业中的应用[J]. 肉类工业, 2014(3): 44-50.
[14] KIM S Y, JO E K, KIM H J, et al. The effects of high-power microwaves on the ultrastructure of Bacillus subtilis[J]. Letters in Applied Microbiology, 2008, 47(1): 35-40.
[15] BINSI P K, VIJI P, VISNUVINAYAGAM S, et al. Microbiological and shelf life characteristics of eviscerated and vacuum packed freshwater catfish (Ompok pabda) during chill storage[J]. Journal of Food Science and Technology, 2015, 52(3): 1 424-1 433.
[16] DATTA A K, NI H. Infrared and hot-air-assisted microwave heating of foods for control of surface moisture[J]. Journal of Food Engineering, 2002, 51(4): 355-364.
[17] 黄明, 黄峰,张首玉,等. 热处理对猪肉食用品质的影响[J]. 食品科学, 2009, 30(23): 189-192.
[18] 王晓宇, 周光宏,徐幸莲,等. 猪肉剪切力的测定方法[J]. 食品科学, 2012, 33(21): 64-67.
[19] 郝教敏. 动物性食品保鲜、加工与安全食用技术研究[M]. 北京:中国农业科学技术出版社, 2012.
[20] RAHMAN M S, AL-FARSI S A. Instrumental texture profile analysis (TPA) of date flesh as a function of moisture content[J]. Journal of Food Engineering, 2005, 66(4): 505-511.
[21] SIKES A L, TOBINA B, TUME R K. Use of high pressure to reduce cook loss and improve texture of low-salt beef sausage batters[J]. Innovative Food Science & Emerging Technologies, 2009, 10(4): 405-412.
[22] 唐彬, 张敏,冯丽萍,等. Sous Vide处理温度对鲶鱼品质的影响[J]. 食品与机械, 2017, 33(3): 115-120.
[23] SOMBOONPANYAKUL P, BARBUT S, JANTAWAT P, et al. Textural and sensory quality of poultry meat batter containing malva nut gum, salt and phosphate[J]. LWT-Food Science and Technology, 2007, 40(3): 498-505.
[24] CAMBERO M I, JARAMILLO C J, ORDOÑEZ J A, et al. Effect of cooking conditions on the flavour compounds and composition of shrimp (Parapenaeus longirostris) broth[J]. Zeitschrift für Lebensmittel-Untersuchung und-Forschung A, 1998, 206(5): 311-322.
[25] CAMBERO M I, PEREIRALIMA C I, ORDOÑEZ J A, et al. Beef broth flavour: Relation of components with the flavour developed at different cooking temperatures[J]. Journal of the Science of Food & Agriculture, 2000, 80(10): 1 519-1 528.
[26] 王凤萍, 陈旋,宋风霞,等. 苦荞活性肽对罗非鱼片的保鲜效果[J]. 食品与发酵工业, 2016, 42(11): 133-137.
[27] ANACLETO P, TEIXEIRA B, MARQUES P, et al. Shelf-life of cooked edible crab (Cancer pagurus) stored under refrigerated conditions[J]. LWT-Food Science and Technology, 2011, 44(6): 1 376-1 382.
[28] LI Tingting, LI Jianrong, HU Wenzhong, et al. Shelf-life extension of crucian carp (Carassius auratus) using natural preservatives during chilled storage[J]. Food Chemistry, 2012, 135(1): 140-145.
[29] WEBER J, BOCHI V C, RIBEIRO C P, et al. Effect of different cooking methods on the oxidation, proximate and fatty acid composition of silver catfish (Rhamdia quelen) fillets[J]. Food Chemistry, 2008, 106(1): 140-146.
[30] 杨万根, 李冠霖,曹泽虹,等. 乳酸链球菌素、植酸及包装材质对调理鸭肉的保鲜效果比较[J]. 食品与发酵工业, 2016, 42(12): 217-221.
[31] FENG Lifang, JIANG Tianjia, WANG Yanbo, et al. Effects of tea polyphenol coating combined with ozone water washing on the storage quality of black sea bream (Sparus macrocephalus)[J]. Food Chemistry, 2012, 135(4): 2 915-2 921.