生产与科研应用

双酶分步酶解提取羊骨中可溶性钙

  • 王雪琦 ,
  • 张珍 ,
  • 徐红艳 ,
  • 刘倩 ,
  • 李晓叶 ,
  • 郝旭东 ,
  • 赵文宝 ,
  • 周芸
展开
  • 1甘肃农业大学 食品科学与工程学院,甘肃 兰州,730070
    2庆阳市食品检验检测中心,甘肃 庆阳,745000
硕士研究生(张珍副教授为通讯作者,E-mail:332037918@qq.com)。

网络出版日期: 2019-09-03

基金资助

中国-马来西亚清真食品及相关产业国际创新合作(1504WKCA094);中国-马来西亚在清真食品生物科技、检测及标准体系的合作研究(17YF1WA166);科技部援助项目(KY201501005);甘肃省财政厅高校基本业务项目(1011JKCA179);甘肃省农牧厅生物技术专项(GNSW-2013-22);甘肃省科技计划资助(17YF1WA166)

Extraction of soluble calcium from sheep bone by two-step enzymolysis

  • WANG Xueqi ,
  • ZHANG Zhen ,
  • XU Hongyan ,
  • LIU Qian ,
  • LI Xiaoye ,
  • HAO Xudong ,
  • ZHAO Wenbao ,
  • ZHOU Yun
Expand
  • 1College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
    2Qingyang Food Inspection and Testing Center, Qingyang 745000, China

Online published: 2019-09-03

摘要

为提高羊骨的高值利用,研究了木瓜蛋白酶和胃蛋白酶分步酶解提取羊骨中可溶性钙的最佳工艺条件。以羊骨粉为原料,游离钙含量为指标,通过单因素试验和响应面优化2种酶的酶解工艺,并在不同加入顺序和时间组合下进行分步水解,提取羊骨中可溶性钙。结果表明,木瓜蛋白酶和胃蛋白酶的最佳酶解条件分别为酶解温度55、40 ℃,酶解时间均为4 h,酶解pH 6.0、2.5,加酶量5 000、5 300 U/g,所测实际游离钙含量是79.02和1 008.68 mg/100 g;在双酶各自最优酶解条件下,按先木瓜蛋白酶后胃蛋白酶的加入顺序,分别酶解3 h,游离钙含量达到了1 839.14 mg/100 g,极显著高于单酶和其他组合(P<0.01)。

本文引用格式

王雪琦 , 张珍 , 徐红艳 , 刘倩 , 李晓叶 , 郝旭东 , 赵文宝 , 周芸 . 双酶分步酶解提取羊骨中可溶性钙[J]. 食品与发酵工业, 2019 , 45(15) : 143 -149 . DOI: 10.13995/j.cnki.11-1802/ts.020337

Abstract

The optimum condition for extracting soluble calcium from sheep bone by papain and pepsin was studied. Using free calcium content as an index, the enzymatic hydrolysis processes of papain and pepsin were optimized by single factor test and response surface analysis, and the two step enzymolysis was carried out under different addition sequences and time combinations of the two enzymes. The results showed that the optimal extraction conditions for papain and pepsin were at 55 ℃, pH 6.0 and at 40 ℃, pH 2.5, hydrolyzed for 4 h with the additions of 5 000 U/g and 5 300 U/g, respectively. Under these conditions, the free calcium contents extracted were 79.02 mg/100 g and 1 008.68 mg/100g, respectively. Based on the optimal hydrolysis conditions of papain and pepsin, the optimum condition for the two-step enzymolysis was to add papain first followed by pepsin and hydrolyzed for 3 h each. Under this condition, the free calcium content reached 1 839.14 mg/100 g, which was significantly higher than those of single enzyme extraction and other combinations (P<0.01). In conclusion, this study intended to lay a foundation for high value utilization of sheep bones and development of related products.

参考文献

[1] 孙蓓, 王龙刚. 畜禽骨的综合利用现状及发展前景[J].中国调味品,2011,36(4):1-4.
[2] 韩克光, 甄守艳,高文伟,等. 单酶水解羊骨粉效果比较及水解指标相关性分析[J].食品科技,2016,41(1):110-114.
[3] 忻欣, 马俪珍,孔保华,等. 采用酶解和发酵联用技术提高羊骨中钙转化率[J].食品与发酵工业,2009,35(8):59-63.
[4] WU W, LI B, HOU H, et al. Isolation and identification of calcium-chelating peptides from pacific cod skin gelatin and their binding properties with calcium[J].Food & Function,2017: 8.
[5] PENG Z, HOU H, ZHANG K, et al. Effect of calcium-binding peptide from Pacific cod (Gadus macrocephalus) bone on calcium bioavailability in rats [J].Food Chemistry, 2017,221:373-378.
[6] HOU H, WANG S, ZHU X, et al. A novel calcium-binding peptide from Antarctic krill protein hydrolysates and identification of binding sites of calcium peptide complex[J].Food Chemistry,2017: S0308814617316278.
[7] HOU T, LIU Y, GUO D, et al. Collagen peptides from crucian skin improve calcium bioavailability and structure characterization by HPLC-ESI-MS/MS[J].Journal of Agricultural and Food Chemistry, 2017:acs.jafc.7b03059.
[8] 林波, 于秀玲,王欣,等. 双酶酶解制备羊骨多肽工艺研究[J].食品科技,2014,39(10):147-150.
[9] 张琪, 甄守燕,霍乃蕊. 碱性蛋白酶和复合蛋白酶双酶水解羊骨粉的工艺研究[J].山西农业大学学报(自然科学版),2017,37(2):121-125.
[10] 张卓睿. 高电压脉冲电场作用下牛骨钙快速离子化的研究[D].长春:吉林大学, 2006:2-9.
[11] 范鸿冰, 陈孙福,洪惠,等.鳄鱼骨双酶酶解产物的功能特性及其抗氧化活性[J].食品与发酵工业,2012,38(12):78-82.
[12] 张金杨, 胡晓,李来好,等. 罗非鱼酶解物矿物离子结合能力及其结合物抗氧化活性[J].食品与发酵工业,2018,44(5):76-81.
[13] 张宏梅, 谭竹钧,韩雅莉. 罗非鱼骨粉可溶性钙提取工艺的探索[J].食品研究与开发,2007,28(8):96-97.
[14] 湛艳红, 郇延军,黄艳梅. 响应面法优化酶解工艺条件提高羊骨泥营养效价的研究[J].食品科技,2016,41(7):152-156.
[15] 赵瑞香, 连喜军,王欣,等. 利用酶法促使骨粉中钙转化的研究[J].食品科学,2000(3):34-36.
[16] 王帅楠, 宗红,陆信曜,等. 利用酶解-发酵联用技术提高猪骨泥的功能性[J].食品与发酵工业, 2015,41(4):87-90.
[17] TAN X, QI L B, FAN F J, et al. Analysis of volatile compounds and nutritional properties of enzymatic hydrolysate of protein from cod bone[J].Food Chemistry,2018,0308814618308306.
[18] BUCKLEY M, PENKMAN K H, WESS T J, et al. Protein and mineral characterisation of rendered meat and bone meal [J]. Food Chemistry, 2012,134(3):1 267-1 278.
[19] TIAGO L S C, FRANCISLENE M S B, NAISE M C S, et al. Optimization of the protein extraction method of goat meat using factorial design and response surface methodology[J].Food Chemistry, 2018,281: 63-70.
[20] 吴有炜. 实验设计与数据处理[M].苏州:苏州大学出版社, 2002.
[21] 王雯, 王睿智,王彤,等. 响应面法优化酶解低温榨取汉麻籽油工艺[J].食品科学,2019,40(8).
[22] 白婵, 饶丹华,熊光权,等.响应面法优化鲟鱼精蛋白肽的酶解提取[J].食品与发酵工业,2018,44(4):180-185.
[23] CONCHA J, SOTO C, CHAMY R, et al. Enzymatic pretreatment on rose-hip oil extraction: Hydrolysis and pressing conditions[J].J Am Oil Chem Soc, 2004,81(6):549-552.
[24] 李俊江, 潘道东,郭宇星,等. 鹅肉蛋白酶解条件优化及酶解产物抗氧化活性研究[J]. 食品科学, 2012, 33(3):126-130.
[25] 施永清, 王巧巧,吴丹丽,等, 响应面试验优化双酶酶解法制备鱼鳞抗菌肽工艺及其抑菌性能分析[J].食品科学, 2018, 39(6): 155-161.
[26] 张恒, 邬应龙. 鸡骨的酶解及酶解液的电泳分析[J].食品与发酵工业, 2010, 36(9):102-105.
[27] 李中宾, 任悦,邹德智,等. 固定化酶辊多效酶解大豆胚片的工艺优化[J].食品科学,2017,38(22):67-73.
[29] HYUN W S, EUN Y J, GWANG W, et al. Go Optimization of hydrolysis conditions for bovine plasma protein using response surface methodology[J].Food Chemistry,2015,185:106-111.
[30] YlENIA R, ElIXABET D D C, HAZAL A, et al. Establishment of ultrasound-assisted extraction of phenolic compounds from industrial potato by-products using response surface methodology[J].Food Chemistry,2018,269:258-263.
文章导航

/