[1] 苗振清,黄锡昌.世界金枪鱼渔业现状分析[J].浙江海洋学院学报, 2002, 21 (4):307-310.
[2] 邹盈,李彦坡,戴志远,等.三种金枪鱼营养成分分析与评价[J].农产品加工,2018(5):43-47.
[3] 张俊,邱永松,陈作志,等.南海外海大洋性渔业资源调查评估进展[J].南方水产科学,2018,14(6):120-129.
[4] 苏红,李雨欣,钱雪丽,等.鳙鱼、金枪鱼和三文鱼鱼头的营养分析与品质评价[J].食品工业科技:2019,40(17):212-217;224.
[5] 缪圣赐,国际渔业动态[J].渔业信息与战略,2016,33(3):156-157.
[6] BIJI K B,RAVISHANKAR C N,VENKATESWARLU R,et al. Biogenic amines in seafood: A review[J]. Journal of Food Science and Technology,2016,53(5): 2 210-2 218.
[7] SANTOS M H S. Biogenic amines: Their importance in foods[J]. International Journal of Food Microbiology, 1996, 29(2-3):213-231.
[8] 李志军,吴永宁,薛长湖.生物胺与食品安全[J].食品与发酵工业, 2004, 30(10):84-91.
[9] VIDAL-CAROU M C, IZQUIERDO-PULIDO M L, MARTÍN-MORRO M C, et al. Histamine and tyramine in meat products: Relationship with meat spoilage[J]. Food Chemistry, 1990, 37(4):239-249.
[10] 景智波,田建军,杨明阳,等.食品中与生物胺形成相关的微生物菌群及其控制技术研究进展[J].食品科学,2018,39(15):262-268.
[11] SHALABY A R. Significance of biogenic amines to food safety and human health[J]. Food Research International, 1996, 29(7):675-690.
[12] 韩笑.贮藏过程中阿根廷鱿鱼生物的变化规律及控制[D].锦州:渤海大学,2019.
[13] BROADLEY K J. The vascular effects of trace amines and amphetamines[J]. Pharmacol Ther, 2010, 125(3):363-375.
[14] FALUS A, GILICZE A. Tumor formation and antitumor immunity; the overlooked significance of histamine[J]. Journal of Leukocyte Biology, 2014, 96(2):225-231.
[15] HERNÁNDEZ-ORTE P, LAPEÑA A C, PEÑA-GALLEGO A, et al. Biogenic amine determination in wine fermented in oak barrels: Factors affecting formation[J]. Food Research International, 2008, 41(7):697-706.
[16] 汤元睿,谢晶.金枪鱼气调保鲜技术的研究进展[J].食品科学, 2014, 35(9):296-300.
[17] BU T, JIN Y, LI X, et al. Effect of electron irradiation and bayberry polyphenols on the quality change of yellowfin tuna fillets during refrigerated storage[J]. Radiation Physics & Chemistry, 2017, 138:67-71.
[18] UCAK I, GOKOGLU N, KIESSLING M, et al. Inhibitory effects of high pressure treatment on microbial growth and biogenic amine formation in marinated herring (Clupea harengus) inoculated with Morganella psychrotolerans[J]. LWT-Food Science and Technology, 2019, 99:50-56.
[19] APONTE M, ANASTASIO A, MARRONE R, et al. Impact of gaseous ozone coupled to passive refrigeration system to maximize shelf-life and quality of four different fresh fish products[J]. LWT-Food Science and Technology, 2018,93:412-419.
[20] 李苗苗,王江峰,徐大伦,等.4种保鲜处理对冰温贮藏金枪鱼片生物胺的影响[J].中国食品学报,2015,15(2):111-119.
[21] 雷志方,谢晶,尹乐,等.温度和姜精油对金枪鱼品质影响及生物胺相关性[J].食品科学, 2017, 38(3):45-52.
[22] 赵庆志,邓建朝,杨贤庆,等.不同贮藏温度下鲐鱼生物胺变化的研究[J].食品工业科技,2018,39(4):260-267;279.
[23] CARBONE M, DONIA D T, SABBATELLA G, et al. Silver nanoparticles in polymeric matrices for fresh food packaging[J]. Journal of King Saud University-Science, 2016,28(4):273-279.
[24] 闵娟.马鲛鱼的生物胺控制与保鲜方法研究[D].厦门:集美大学,2018.
[25] THIANSILAKUL Y, BENJAKUL S, RICHARDS M P. Effect of phenolic compounds in combination with modified atmospheric packaging on inhibition of quality losses of refrigerated Eastern little tuna slices[J]. LWT-Food Science and Technology, 2013, 50(1):146-152.
[26] 肖蕾,蓝蔚青,孙晓红,等. 金枪鱼常用保鲜方式及品质检测技术研究进展[J]. 包装工程, 2017, 38(5):115-120.
[27] WU T, WU C, FANG Z, et al. Effect of chitosan microcapsules loaded with nisin on the preservation of small yellow croaker[J]. Food Control, 2017, 79:317-324.
[28] SCHELEGUEDA, L I, VALLEJO M, GLIEMMO M F, et al. Synergistic antimicrobial action and potential application for fish preservation of a bacteriocin produced by Enterococcus mundtii isolated from Odontesthes platensis[J]. LWT-Food Science and Technology, 2015, 64(2):794-801.
[29] 李双双.金枪鱼的生物保鲜技术研究[D].舟山:浙江海洋,2013.
[30] BAO H N D, USHIO H, OHSHIMA T. Antioxidative activities of mushroom (Flammulina velutipes) extract added to bigeye tuna meat: dose-dependent efficacy and comparison with other biological antioxidants[J]. Journal of Food Science, 2010, 74(2):C162-C169.
[31] TAKAHASHI H, KURAMOTO S, MIYA S, et al. Use of commercially available antimicrobial compounds for prevention of Listeria monocytogenes growth in ready-to-eat minced tuna and salmon roe during shelf life[J]. Journal of Food Protection, 2011, 74(6):994-998.
[32] WANG Q F, HOU Y H, YAN P S. Effect of Cold-Active Protease Treatments on Bigeye Tuna (Thunnus obesus) Meat during Chilled Storage[M].Berlin:Springer, 2012:895-902.
[33] 田鑫,刘红,李传勇,等.反相高效液相色谱法同时检测海产品中8种生物胺[J].食品安全质量检测学报,2017,8(4):1 171-1 178.
[34] 程卫,王艳伟,陈培云,等.HPLC测定虾皮中不同类型的生物胺[J].食品工业, 2016,37(2):293-296.
[35] HERRERO A, SANLLORENTE S, REGUERA C, et al. A new multiresponse optimization approach in combination with a D-Optimal experimental design for the determination of biogenic amines in fish by HPLC-FLD[J]. Analytica Chimica Acta, 2016, 945:31-38.
[36] 张殿伟,高月宇,王金菊,等.发酵肉制品中生物胺的高效液相色谱分析法[J].食品与发酵工业,2019,45(9):256-261.
[37] 王春利,赵晓娟,王英姿.白酒中8种生物胺的高效液相色谱分析法[J].酿酒科技,2017(11):113-116.
[38] 叶磊海,裘均陶,钟世欢,等.基于PriME净化的液相色谱-串联质谱法分析水产品中9种生物胺[J].食品工业科技,2019,40(9):253-257;263.
[39] MOLOGNONI L, DAGUER H, PLONCIO L A, et al. A multi-purpose tool for food inspection: Simultaneous determination of various classes of preservatives and biogenic amines in meat and fish products by LC-MS[J]. Talanta, 2018,178:1 053-1 066.
[40] 孙亚军,廖建萌,雷晓凌,等.液相色谱-串联质谱法同时测定虾仁中八种生物胺[J].食品工业,2015,36(3):273-277.
[41] 赵玲玲,杜冰,曹炜,等.超高效液相色谱-串联质谱法同时测定蜂蜜中8种生物胺[J].食品工业科技,2018,39(4):228-234.
[42] 魏泉增,汤雅,李伟民.液相色谱-串联质谱测定食醋中生物胺含量[J].中国酿造,2019,38(4):170-173.
[43] 彭祺,边威,王芳,等.液质联用法测定黄酒中生物胺含量[J].酿酒科技,2014(2):79-82.
[44] 蒋林蓉,徐志伟,黄杰英,等.基于QuEChERS净化的液相色谱-串联质谱法分析食品中的6种生物胺[J].中国调味品,2017,42(8):127-132.
[45] JASTRZE,NSKA A, PIASTA A, SZYK E. Application of ion chromatography for the determination of biogenic amines in food samples[J]. Journal of Analytical Chemistry, 2015, 70(9):1 131-1 138.
[46] 孙永,刘楠,李智慧,等.抑制性电导检测-离子色谱法快速测定水产品中的生物胺[J].食品安全质量检测学报,2015(10):3 992-3 997.
[47] 周勇,王萍亚,赵华,等.离子色谱法测定冷冻海产品中的生物胺[J].食品工业,2014,35(5):238-241.
[48] 何梨梨.对三类不同化学结构生物胺同时分离检测的CE方法研究[D].上海:东华大学,2017.
[49] 王冠,唐苑融,葛淑丽,等.毛细管电泳安培检测在线富集分析生物胺研究[J].华东师范大学学报(自然科学版),2016(1):123-133.
[50] 安冬,李玉,姜泽东,等.毛细管电泳-电化学发光联用分离检测水产品中的组胺和亚精胺[J].中国食品学报,2014,14(12):136-142.
[51] VITALI L, VALESE A C, AZEVEDO M S, et al. Development of a fast and selective separation method to determine histamine in tuna fish samples using capillary zone electrophoresis[J]. Talanta, 2013, 106(6):181-185.
[52] 夏前芳,罗丹,李在均.石墨烯基葡萄糖生物传感器的电化学制备及应用[J].化学学报,2012,70(19):2 079-2 084.
[53] NEDELJKO P,TUREL M,LOBNIK A. Hybrid sol-gel based sensor layers for optical determination of biogenic amines[J]. Sensors & Actuators B: Chemical,2017,246:1 066-1 073.
[54] 屠青霞. 固相电化学发光传感检测几种鱼中生物胺研究[D].天津:天津科技大学,2017.
[55] HENAO-ESCOBAR W, DEL lORNO-DE ROMÁN T D, DOMÍNGUEZ-RENEDO O, et al. Dual enzymatic biosensor for simultaneous amperometric determination of histamine and putrescine[J]. Food Chemistry, 2016, 190:818-823.
[56] TAO Z H, SATO M, HAN Y L, et al. A simple and rapid method for histamine analysis in fish and fishery products by TLC determination[J]. Food Control, 2011, 22(8):1 154-1 157.
[57] LI C, JIANG X, HOU X. Dielectric barrier discharge molecular emission spectrometer as gas chromatographic detector for amines[J]. Microchemical Journal, 2015, 119:108-113.
[58] LENG P Q, ZHAO F L, YIN B C, et al. A novel, colorimetric method for biogenic amine detection based on arylalkylamine N-acetyltransferase[J]. Chemical Communications, 2015, 51(41):8 712-8 714.
[59] SHUMILINA E, CIAMPA A, CAPOZZI F, et al. NMR approach for monitoring post-mortem changes in Atlantic salmon fillets stored at 0 and 4 ℃[J]. Food Chemistry, 2015, 184:12-22.
[60] MUSCARELLA, MARILENA, MAGRO S L,CAMRANIELLO M, et al. Survey of histamine levels in fresh fish and fish products collected in;Puglia (Italy) by ELISA and HPLC with fluorimetric detection[J]. Food Control, 2013, 31(1):211-217.