综述与专题评论

超高压诱导食品中微生物失活的研究进展

  • 马亚琴 ,
  • 贾蒙 ,
  • 成传香 ,
  • 王鹏旭
展开
  • (西南大学柑桔研究所,国家柑桔工程技术研究中心,重庆,400712)
博士,副研究员(本文通讯作者,E-mail: maya211@163.com)。

收稿日期: 2019-08-02

  网络出版日期: 2020-02-16

基金资助

国家现代农业柑橘产业技术体系(CARS-26-06B);中央高校基本业务费专项资金资助(XDJK2019B048)

Review on inactivation of microorganisms in foods induced by high pressure processing

  • MA Yaqin ,
  • JIA Meng ,
  • CHENG Chuanxiang ,
  • WANG Pengxu
Expand
  • (Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China)

Received date: 2019-08-02

  Online published: 2020-02-16

摘要

超高压处理(high pressure processing,HPP)作为一种新型的非热杀菌技术,具有最大限度保留食品中营养物质的优势,已在食品工业中广泛应用。但由于加工环境以及食品基质的复杂性,不同微生物在HPP下敏感度不同,且会形成部分亚致死微生物,引发食品安全的潜在隐患。基于HPP设备原理及其应用于食品加工中的杀菌效果,该文对影响超高压杀菌效果的内外因子以及导致细菌失活(致死或亚致死效应)的作用机制进行了综述,并分析了超高压与其他技术联用可能是抑制微生物亚致死效应的有效途径。

本文引用格式

马亚琴 , 贾蒙 , 成传香 , 王鹏旭 . 超高压诱导食品中微生物失活的研究进展[J]. 食品与发酵工业, 2019 , 45(22) : 268 -275 . DOI: 10.13995/j.cnki.11-1802/ts.021890

Abstract

High pressure processing (HPP), as a new non-thermal sterilization technology, has the advantage of retaining nutrients in food to the greatest extent, and has been widely used in food industry. Due to the complexity of processing condition and food matrices, however, sensitivities to HPP are varied for different microorganisms. Sub-lethal microorganisms may be produced, hence potential food safety hazards will occur. Based on the equipment principle and effect of microbial inactivation by HPP in food processing, the mechanism of inactivation (lethal effect and sub-lethal effect) caused by internal and external factors involved in HPP for sterilization was elaborated in detail. And combination of HPP and other technologies as an effective way to inhibit the sub-lethal effect of microorganisms was also illustrated.

参考文献

[1] W/GIORGIS G A. Review on high-pressure processing of foods[J]. Cogent Food & Agriculture,2019, 5(1): 1-23.
[2] BALASUBRAMANIAM V M, MARTINEZ-MONTEAGUDO S I, GUPTA R. Principles and application of high pressure-based technologies in the food industry[J]. Annual Review of Food Science and Technology, 2015, 6: 435-462.
[3] HUANG H W, LUNG H M, YANG B B, et al. Responses of microorganisms to high hydrostatic pressure processing[J]. Food Control, 2014, 40(40):250-259.
[4] SEVENICH R, RAUH C, KNORR D. A scientific and interdisciplinary approach for high pressure processing as a future toolbox for safe and high quality products: A review[J]. Innovative Food Science & Emerging Technologies, 2016, 38: 65-75.
[5] SEVENICH R, MATHYS A. Continuous versus discontinuous ultra-high-pressure systems for food sterilization with focus on ultra-high-pressure homogenization and high-pressure thermal sterilization: A review[J]. Comprehensive Reviews in Food Science and Food Safety, 2018, 17(3): 646-662.
[6] 王满生. 脉冲电场作用酿酒酵母亚致死损伤及生理行为研究[D]. 广州:华南理工大学, 2016.
[7] KIMURA K, MORIMATSU K, INAOKA T, et al. Injury and recovery of Escherichia coli ATCC25922 cells treated by high hydrostatic pressure at 400-600 MPa[J]. Journal of Bioscience and Bioengineering, 2017, 123(6): 698-706.
[8] PÉREZ-BALTAR A, SERRANO A, BRAVO D, et al. Combined effect of high pressure processing with enterocins or thymol on the inactivation of Listeria Monocytogenes and the characteristics of sliced dry-cured ham[J]. Food and Bioprocess Technology, 2019, 12(2): 288-297.
[9] HUANG H W, CHEN B Y, WANG C Y. Comparison of high pressure and high temperature short time processing on quality of carambola juice during cold storage[J]. Journal of Food Science and Technology, 2018, 55(5): 1 716-1 725.
[10] PYATKOVSKYY T I, SHYNKARYK M V, MOHAMED H M, et al. Effects of combined high pressure (HPP), pulsed electric field (PEF) and sonication treatments on inactivation of Listeria innocua[J]. Journal of Food Engineering, 2018, 233: 49-56.
[11] WANG C F, RAMASWAMY H S, SUN W, et al. The destruction and sublethal effect of cycle or continuous high pressure treatment on Escherichia coli in different frozen and unfrozen media[C].2018 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers, 2018: 1.
[12] EVERT-ARRIAGADA K, TRUJILLO A J, AMADOR-ESPEJO G G, et al. High pressure processing effect on different Listeria spp. in a commercial starter-free fresh cheese[J]. Food Microbiology, 2018, 76: 481-486.
[13] SHEEN S, CASSIDY J, SCULLEN B, et al. Inactivation of Salmonella spp. in ground chicken using high pressure processing[J]. Food Control, 2015, 57: 41-47.
[14] KAUR B P, RAO P S. Modeling the combined effect of pressure and mild heat on the inactivation kinetics of Escherichia coli, Listeria innocua, and Staphylococcus aureus in black tiger shrimp (Penaeus monodon)[J]. Frontiers in Microbiology, 2017, 8: 1 311.
[15] SERMENT-MORENO V, BARBOSA-CANOVAS G, TORRES J A, et al. High-pressure processing: Kinetic models for microbial and enzyme inactivation[J]. Food Engineering Reviews, 2014, 6(3): 56-88.
[16] PELEG M, COLE M B. Reinterpretation of microbial survival curves[J]. Critical Reviews in Food Science, 1998, 38(5): 353-380.
[17] GEORGET E, SEVENICH R, REINEKE K, et al. Inactivation of microorganisms by high isostatic pressure processing in complex matrices: A review[J]. Innovative Food Science & Emerging Technologies, 2015, 27: 1-14.
[18] GAYÁN E, GOVERS S K, AERTSEN A. Impact of high hydrostatic pressure on bacterial proteostasis[J]. Biophysical Chemistry, 2017, 231: 3-9.
[19] ATES M B, RODE T M, SKIPNES D, et al. Survival of sublethally injured Listeria in model soup after nonisothermal heat and high-pressure treatments[J]. European Food Research and Technology, 2017, 243(6): 1 083-1 090.
[20] 胡友栋. 超高压处理对胡柚汁的杀菌灭酶效果及品质影响[D]. 杭州:浙江工商大学, 2009.
[21] 王春芳, 毛明, 王为民, 等. 微生物在超高压下的致变机理和影响因素研究现状[J]. 中国食品学报, 2013, 13(7): 164-169.
[22] NORIEGA E, VELLIOU E G, VAN DERLINDEN E, et al. Role of growth morphology in the formulation of NaCl-based selective media for injury detection of Escherichia coli, Salmonella Typhimurium and Listeria innocua[J]. Food Research International, 2014, 64: 402-411.
[23] PANIAGUA-MARTÍNEZ I, RAMÍREZ-MARTÍNEZ A, SERMENT-MORENO V, et al. Non-thermal technologies as alternative methods for Saccharomyces cerevisiae inactivation in liquid media: A review[J]. Food and Bioprocess Technology, 2018, 11(3): 487-510.
[24] 孙兆远, 侯会绒, 陈晓东, 等. 超高压条件对鲜切莲藕杀菌效果的影响[J]. 食品研究与开发, 2015, 36(22):19-24.
[25] 孙新生. 超高压处理对低温火腿中单增李斯特菌钝化作用研究[D]. 南京:南京农业大学, 2012.
[26] RUBIO B, POSSAS A, RINCÓN F, et al. Model for Listeria monocytogenes inactivation by high hydrostatic pressure processing in Spanish chorizo sausage[J]. Food Microbiology, 2018, 69: 18-24.
[27] BUZRUL S. Multi-pulsed high hydrostatic pressure treatment of foods[J]. Foods, 2015, 4(2): 173-183.
[28] NGUYEN T M H, DANTIGNY P, PERRIER-CORNET J M, et al. Germination and inactivation of Bacillus subtilis spores induced by moderate hydrostatic pressure[J]. Biotechnology and Bioengineering, 2010, 107(5): 876-883.
[29] HYGREEVA D, PANDEY M C. Novel approaches in improving the quality and safety aspects of processed meat products through high pressure processing technology-A review[J]. Trends in Food Science & Technology, 2016, 54: 175-185.
[30] NASILOWSKA J, SOKOLOWSKA B, FONBERG-BROCZEK M. Long-term storage of vegetable juices treated by high hydrostatic pressure: Assurance of the microbial safety[J]. BioMed Research International, 2018, 2018:1-12.
[31] SYED Q A, BUFFA M, GUAMIS B, et al. Factors affecting bacterial inactivation during high hydrostatic pressure processing of foods: A review[J]. Critical Reviews in Food Science and Nutrition, 2016, 56(3): 474-483.
[32] HEREU A, BOVER-CID S, GARRIGA M, et al. High hydrostatic pressure and biopreservation of dry-cured ham to meet the Food Safety Objectives for Listeria monocytogenes[J]. International Journal of Food Microbiology, 2012, 154(3): 107-112.
[33] BAYINDIRLI A, ALPAS H, BOZOGˇLU F, et al. Efficiency of high pressure treatment on inactivation of pathogenic microorganisms and enzymes in apple, orange, apricot and sour cherry juices[J]. Food Control, 2006, 17(1): 52-58.
[34] ATES M B, RODE T M, SKIPNES D, et al. Modeling of Listeria monocytogenes inactivation by combined high-pressure and mild-temperature treatments in model soup[J]. European Food Research and Technology, 2016, 242(2): 279-287.
[35] VERCAMMEN A, VIVIJS B, LURQUIN I, et al. Germination and inactivation of Bacillus coagulans and Alicyclobacillus acidoterrestris spores by high hydrostatic pressure treatment in buffer and tomato sauce[J]. International Journal of Food Microbiology, 2012, 152(3): 162-167.
[36] MARTÍNEZ-ONANDI N, SÁNCHEZ C, NUÑEZ M, et al. Microbiota of Iberian dry-cured ham as influenced by chemical composition, high pressure processing and prolonged refrigerated storage[J]. Food Microbiology, 2019, 80: 62-69.
[37] DAS S, LALITHA K V, JOSEPH G, et al. High pressure destruction kinetics along with combined effect of potassium sorbate and high pressure against Listeria monocytogenes in Indian white prawn muscle[J]. Annals of Microbiology, 2016, 66(1): 245-251.
[38] ISHIMORI T, TAKAHASHI K, GOTO M, et al. Synergistic effects of high hydrostatic pressure, mild heating, and amino acids on germination and inactivation of Clostridium sporogenes spores[J]. Appl Environ Microbiol, 2012, 78(23): 8 202-8 207.
[39] BOVER-CID S, SERRA-CASTELLÓ C, DALGAARD P, et al. New insights on Listeria monocytogenes growth in pressurised cooked ham: A piezo-stimulation effect enhanced by organic acids during storage[J]. International Journal of Food Microbiology, 2019, 290: 150-158.
[40] BAPTISTA I, ROCHA S M, CUNHA A, et al. Inactivation of Staphylococcus aureus by high pressure processing: An overview[J]. Innovative Food Science & Emerging Technologies, 2015, 35(2): 181-188.
[41] PICART-PALMADE L, CUNAULT C, CHEVALIER-LUCIA D, et al. Potentialities and limits of some non-thermal technologies to improve sustainability of food processing[J]. Frontiers in Nutrition, 2018, 5: 130.
[42] 孔晓雪, 付勇, 姬赛赛, 等. 超高压对大肠杆菌O157:H7细胞膜的损伤效应[J]. 食品科学, 2017,38(8): 1-5.
[43] MOTA M J, LOPES R P, DELGADILLO I, et al. Microorganisms under high pressure-adaptation, growth and biotechnological potential[J]. Biotechnology Advances, 2013, 31(8): 1 426-1 434.
[44] YUSTE J, CAPELLAS M, PLA R, et al. High pressure processing for food safety and preservation: A review [J]. Journal of Rapid Methods & Automation in Microbiology, 2001, 9(1): 1-10.
[45] PATTERSON M F. Microbiology of pressure-treated foods[J]. Journal of Applied Microbiology, 2005, 98(6): 1 400-1 409.
[46] WANG Langhong, ZENG Xinan, WANG Mansheng, et al. Modification of membrane properties and fatty acids biosynthesis-related genes in Escherichia coli and Staphylococcus aureus: Implications for the antibacterial mechanism of naringenin[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2018, 1 860(2): 481-490.
[47] BARBA F J, KOUBAA M, DO PRADO-SILVA L, et al. Mild processing applied to the inactivation of the main foodborne bacterial pathogens: A review[J]. Trends in Food Science & Technology, 2017, 66: 20-35.
[48] UCAK I, GOKOGLU N, KIESSLING M, et al. Inhibitory effects of high pressure treatment on microbial growth and biogenic amine formation in marinated herring (Clupea harengus) inoculated with Morganella psychrotolerans[J]. LWT-Food Science and Technology, 2019, 99: 50-56.
[49] MARTÍNEZ-MONTEAGUDO S I, YAN B, BALASUBRAMANIAM V M. Engineering process characterization of high-pressure homogenization-from laboratory to industrial scale[J]. Food Engineering Reviews, 2017, 9(3): 143-169.
[50] HUANG C Y, SHEEN S, SOMMERS C H, et al. Modeling the survival of Escherichia coli O157: H7 under hydrostatic pressure, process temperature, time and allyl isothiocyanate stresses in ground chicken[J]. Frontiers in Microbiology, 2018, 9: 1-11.
[51] RODRIGUES I, TRINDADE M A, CARAMIT F R, et al. Effect of high pressure processing on physicochemical and microbiological properties of marinated beef with reduced sodium content[J]. Innovative Food Science & Emerging Technologies, 2016, 38: 328-333.
[52] STRATAKOS A C, LINTON M, TESSEMA G T, et al. Effect of high pressure processing in combination with Weissella viridescens as a protective culture against Listeria monocytogenes in ready-to-eat salads of different pH[J]. Food Control, 2016, 61: 6-12.
文章导航

/