选取突变体K49R进行分离纯化、酶学性质表征,并进行全细胞催化合成β-丙氨酸,旨在研究红粉甲虫来源的L-天冬氨酸-α-脱羧酶(L-aspartate-α-decarboxylase,ADC)的酶学性质,并为生物法制备β-丙氨酸提供理论与技术支持。突变体K49R最适pH为6.5,在pH 6.0~7.0之间保持稳定;最适温度为42 ℃,热稳定性较野生型提高1.7倍;底物亲和力大幅提高,催化效率是野生型的1.8倍。在培养基中添加10 g/L葡萄糖可以有效提高重组菌的生物量,以及重组酶的可溶性表达量;在全细胞催化合成β-丙氨酸体系中,添加磷酸吡哆醛(pyridoxal-5-phosphate,PLP)可以缩短反应时间,提高催化效率。该研究开发了具有工业化潜力的工程菌,建立了绿色、高效的β-丙氨酸生物合成法,为β-丙氨酸生物合成的产业化奠定了重要基础。
This study aimed to characterize the enzymatic properties of L-aspartate-α-decarboxylase (ADC) derived from red flour beetles in order to provide theoretical and technical support for β-alanine bioproduction. A mutant K49R derived from red flour beetles was purified and characterized, followed by conducting a whole-cell catalysis. It was found that the optimum reaction pH and temperature of K49R was 6.5 and 42 ℃, respectively, and the thermal stability of K49R was 1.7 times higher than that of the wild type. The substrate affinity of K49R was greatly improved, and the catalytic efficiency was 1.8 times higher that of the wild type. Additionally, the biomass of the recombinant Escherichia coli and the expression level of ADC were effectively increased by adding 10 g/L glucose into the medium. The addition of pyridoxal phosphate (PLP) shorted the reaction time and improved the catalytic efficiency. In conclusion, by construction of an engineered strain this study provides a green and efficient biosynthesis method to produce β-alanine, which lays an important foundation for industrializing the biosynthesis of L-aspartate.
[1] CARLSON GH, HOTCHKISS CN.Preparation of beta-alanine. US, 2336067[P]. 1943.
[2] FORD J H.The alkaline hydrolysis of β-aminopropionitrile[J]. J Am Chem Soc, 1945, 67(5):876-877.
[3] DE CARVALHO C.Enzymatic and whole cell catalysis: finding new strategies for old processes[J]. Biotechnol Adv, 2011, 29(1):75-83.
[4] SCHMID A, DORDICK JS, HAUER B, et al.Industrial biocatalysis today and tomorrow[J]. Nature, 2001, 409(6 817):258-268.
[5] SALDANHA SA, BIRCH LM, WEBB ME, et al.Identification of Tyr58 as the proton donor in the aspartate-α-decarboxylase reaction[J]. Chem Commun, 2001, 18:1 760-1 761.
[6] SCHMITZBERGER F, KILKENNY M L, LOBLEY C M C, et al. Structural constraints on protein self-processing in L-aspartate-α-decarboxylase[J]. EMBO J, 2003, 22(23):6 193-6 204.
[7] LEE B I, SUH S W.Crystal structure of the schiff base intermediate prior to decarboxylation in the catalytic cycle of aspartate α-decarboxylase[J]. J Mol Biol, 2004, 340(1):1-7.
[8] KÖNST P M, FRANSSEN M C R, SCOTT E L, et al. A study on the applicability of L-aspartate α-decarboxylase in the biobased production of nitrogen containing chemicals[J]. Green Chem, 2009, 11:1 646-1 652.
[9] WILLIAMSON JM and BROWN GM. Purification and properties of L-Aspartate-alpha-decarboxylase, an enzyme that catalyzes the formation of beta-alanine in Escherichia coli[J]. J Biol Chem, 1979, 254(16):8 074-8 082.
[10] RAMJEE MK, GENSCHEL U, ABELL C, et al.Escherichia coli L-aspartate-alpha-decarboxylase: preprotein processing and observation of reaction intermediates by electrospray mass spectrometry[J]. Biochem J, 1997, 323(Pt 3):661-669.
[11] QIAN Y, LIU J, SONG W, et al.Production of β-Alanine from fumaric acid using a dual-enzyme cascade[J]. ChemCatChem, 2018, 10:4 984-4 991.
[12] CHOPRA S, PAI H, RANGANATHAN A, et al.Expression, purification, and biochemical characterization of Mycobacterium tuberculosis aspartate decarboxylase, PanD[J]. Protein Expres Purif, 2002, 25(3):533-540.
[13] SHEN Y, ZHAO L, LI Y, et al.Synthesis of β-alanine from L-aspartate using L-aspartate-α-decarboxylase from Corynebacterium glutamicum[J]. Biotechnol Lett, 2014, 36(8):1 681-1 686.
[14] SONG C, LEE J, KO Y, et al.Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid[J]. Metab Eng, 2015, 30:121-129.
[15] LI H, LU X, CHEN K, et al.β-alanine production using whole-cell biocatalysts in recombinant Escherichia coli[J]. Mol Catal, 2018, 449:93-98.
[16] DAI F, LIANG Q, CAO C, et al.Aspartate decarboxylase is required for a normal pupa pigmentation pattern in the silkworm Bombyx mori[J]. Sci Rep, 2015, 5:10 885.
[17] RICHARDSON G, DING H, ROCHELEAU T, et al.An examination of aspartate decarboxylase and glutamate decarboxylase activity in mosquitoes[J]. Mol Biol Rep, 2010, 37(7).
[18] BORODINA I, KILDEGAARD KR, JENSEN NB, et al.Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via β-alanine[J]. Metabolic Eng, 2015, 27:57-64.
[19] 高宇. 一釜双酶法转化富马酸制备β-丙氨酸催化体系的构建及工艺优化[D]. 无锡:江南大学, 2017.
[20] 王超,叶文琪,薛岚,等. 赤拟谷盗来源天冬氨酸α-脱羧酶分子改造及催化合成β-丙氨酸工艺的建立[J].食品与发酵工业,2019, DOI: 10.13995/j.cnki.11-1802/ts.019670.