贮运与保鲜

采用近红外光谱进行采后苹果品种及货架期定性判别

  • 张鹏 ,
  • 陈帅帅 ,
  • 李江阔 ,
  • 李博强 ,
  • 徐勇
展开
  • 1(国家农产品保鲜工程技术研究中心(天津),农业农村部农产品贮藏保鲜重点实验室,天津市农产品采后生理与贮藏保鲜重点实验室,天津, 300384)
    2(大连工业大学 食品学院,辽宁 大连,116034)
    3(中国科学院植物研究所资源植物重点实验室,北京,100093)

修回日期: 2018-09-04

  网络出版日期: 2019-11-15

基金资助

国家重点研发计划资助(2016YFD0400903)

Near-infrared spectroscopy for qualitative identification of postharvest apple varieties and shelf life

  • ZHANG Peng ,
  • CHEN Shuaishuai ,
  • LI Jiangkuo ,
  • LI Boqiang ,
  • XU Yong
Expand
  • 1(Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs; National Engineering and Technology Research Center for Preservation of Agricultural Products (Tianjin), Tianjin 300384, China)
    2(College of Food Engineering, Dalian Polytechnic University, Dalian 116034, China)
    3(Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China)

Revised date: 2018-09-04

  Online published: 2019-11-15

摘要

运用近红外光谱技术,通过不同光谱预处理和不同光谱波段选择,研究苹果品种(嘎啦、乔纳金、金冠、寒富)及货架期(0、14、28 d)的近红外判别模型。结果表明,不同品种苹果定标判别模型最优光谱预处理方法为:在全波长范围(408.8~2 492.8 nm)内,采用去散射结合二阶导数光谱预处理,对未知样品判别正确率为85.00%~95.00%;苹果货架期较优定标模型在1 108~2 492.8 nm范围内,光谱预处理方法为标准正常化处理(standard normal variate, SNV)+去散射处理(detrend, D)+一阶导数,预测样品正确率为91.67%~96.67%。实验证明,近红外光谱技术对采后苹果品种及货架期检测具有适用性。

本文引用格式

张鹏 , 陈帅帅 , 李江阔 , 李博强 , 徐勇 . 采用近红外光谱进行采后苹果品种及货架期定性判别[J]. 食品与发酵工业, 2019 , 45(19) : 200 -205 . DOI: 10.13995/j.cnki.11-1802/ts.018238

Abstract

The near-infrared discrimination model of apple varieties (Gala, Jonagold, Golden Delicious, Hanfu) and shelf life (0, 14, 28 d), which are using the near-infrared spectroscopy technology by means of different spectral pre-processing methods and different spectral bands selections were studied. The results showed that the optimal spectral pre-processing methods for different apple varieties was determined to be within the full wavelength range (408.8 to 4922.8 nm), derivative spectral pretreatment, the positive rate for unknown samples was 85.00% to 95.00%. Apple's shelf life optimal calibration model was in the range of 1108 to 2492.8 nm, and the spectral pretreatment method was standard normal variate(SNV)+ detrend (D)+ first derivative to predict the accuracy of the sample. The accuracy of the sample was from 91.37% to 96.67%. The results demonstrated that near-infrared spectroscopy has applicability to postharvest apple varieties and shelf life testing.

参考文献

[1] 刘军弟,霍学喜,韩明玉,等. 中国苹果产业发展现状及趋势分析[J].北方园艺,2012(20): 164-168.
[2] 潘晓倩,申琳,生吉萍.苹果采后软化过程中糖类物质代谢的研究进展[J].中国食物与营养, 2011,17(11): 29-32.
[3] XU H, QI B, SUN T, et al.Variable selection in visible and near-infrared spectra: Application to on-line determination of sugar content in pears[J].Journal of Food Engineering,2012,109(1): 142-147.
[4] WANG J,NAKANO K,OHASHI S.Nondestructive evaluation of jujube quality by visible and near-infrared spectroscopy[J].LWT-Food Science and Technology,2011,44(4): 1 119-1 125.
[5] MOGHIMI A,AGHKHANI M H,SAZGARNIA A,et al.Improvement of nir transmission mode for internal quality assessment of fruit using different orientations[J]. Journal of Food Process Engineering,2011,34(5):1 759-1 774.
[6] 刘小路,薛璐,鲁晓翔,等.蓝莓可溶性固形物、总酸近红外无损检测模型的建立[J].食品与生物技术学报,2016,35(7):752-756.
[7] 夏俊芳,李培武,李小昱,等.不同预处理对近红外光谱检测脐橙VC含量的影响[J].农业机械学报,2007,38(6):107-111.
[8] 李光辉,任亚梅,任小林,等.苹果品种及损伤苹果的FT-NIR 鉴别研究[J].食品科学,2012,33(16):251-256.
[9] 何勇,李晓丽, 邵咏妮.基于主成分分析和神经网络的近红外光谱苹果品种鉴别方法研究[J].光谱学与光谱分析,2006,26(5):850-853.
[10] 赵杰文,呼怀平,邹小波.支持向量机在苹果分类的近红外光谱模型中的应用[J].农业工程学报,2007,23(4):149-152.
[11] LUO W Q,HUAN S Y,FU H Y,et al.Preliminary study on the application of near infrared spectroscopy and pattern recognition methods to classify different types of apple samples[J].Food Chemisty,2011,128(2):555-561.
[12] XING J,BRAVO C,MOSHOU D,et al.Bruise detection on golden delicious apples by Vis/NIR spectroscopy[J].Computers and Electronics in Agriculture,2006,52(1-2):11-20.
[13] 刘辉军,孙斌,陈华才.基于近红外光谱的不同产地苹果货架期鉴别方法[J].光电工程,2011,38(5):86-91.
[14] 王加华,孙旭东,潘璐,等.基于可见/近红外能量光谱的苹果褐腐病和水心鉴别[J].光谱学与光谱分析,2008,28(9):2 098-2 102.
[15] 李顺峰,张丽华,刘兴华,等.基于主成分分析的苹果霉心病近红外漫反射光谱判别[J].农业机械学报,2011,42(10):158-161.
[16] 韩东海,刘新鑫,鲁超,等.苹果内部褐变的光学无损伤检测研究[J].农业机械学报,2006,37(6):86-88;93.
[17] 马本学,饶秀勤,应义斌,等.基于近红外漫反射光谱的香梨类别定性分析[J].光谱学与光谱分析, 2009, 29(12): 3 288-3 290.
[18] PEREZ-MARIN D,SANCHEZ M T,PAZ P, et al.Postharvest shelf life discrimination of nectarines produced under different irrigation strategies using NiR-spectroscopy[J].LWT-Food Science and Technology,2011,44(6):1 405-1 414.
[19] 罗枫,鲁晓翔,张鹏,等.近红外光谱对贮藏期樱桃品质的定性判别[J].食品与发酵工业,2015,41(4):197-201.
[20] 严衍禄,赵龙莲,李军会,等.现代近红外光谱分析的信息处理技术[J].光谱学与光谱分析,2000,20(6):777-780.
[21] 王丹,鲁晓翔,张鹏,等.近红外光谱检测不同贮藏期磨盘柿的内部品质[J].光谱实验室, 2013, 30(6):2 769-2 774.
[22] 杨艳芬. 大樱桃采后生理与贮藏保鲜技术研究进展[J].北方园艺,2009 (11):122-124.
[23] LIM J, MO C, NOH S H, et al. Capsaicinoids content pre-diction model development for Korean red-pepper powder using a visible and near-infrared spectroscopy[J]. Proceedings of SPIE-The International Society for Optics and Photonics,2012,8 369(3):28.
[24] 严衍禄. 近红外光谱分析基础与应用[M].北京:中国轻工业出版社,2005.
文章导航

/