为筛选得到降解白酒酒糟中纤维素能力较强的菌株,该研究以酒醅和窖泥为研究对象,通过富集、分离,并以CMC-Na为唯一碳源初筛得到9株产纤维素酶菌株,菌株P7 D/d值最大,达到23;经复筛,菌株P7 CMC酶活最高,为49.31 U,在4 d将滤纸条完全降解,酒糟降解率为22.1 %。不同发酵条件对酶活的影响研究表明,菌株P7和P′16对酒糟利用较好,最适培养时间在48 h左右,在初始pH 4.0和44 ℃下酶活高于其他菌株。对菌株P7和P′16进行生理生化鉴定,结合16S rDNA测序对比,菌株P7为贝莱斯芽孢杆菌,P′16为解淀粉芽孢杆菌。
The purpose of this study is to screen strains that have strong cellulose degradation ability for the degrading distiller's grains. From the wine cellar and pit mud, 9 strains of microorganisms that produce cellulase were obtained using sodium carboxymethyl cellulose as the sole carbon source. The strain P7 had the highest D/d value (23) and produced the highest cellulase of 49.31 IU/mL. After 4 days of incubation, the filter paper was completely degraded, and the degradation rate of distiller's grains was 22.1%. In addition, the effect of different fermentation conditions on enzyme activity were studied. The strains P7 and P'16 had the highest performance in distiller's grains degradation. The optimum culture time was about 48 h. The enzyme activity of the two strains was higher than other strains at initial pH of 4.0 and temperature of 44 ℃. Using physiological and biochemical identification, combining with 16S rDNA sequencing, the strain P7 was identified to be Bacillus brevis, and P'16 to be B. amyloliquefaciens.
[1] 江龙法,钱志刚,夏泽华,等.分解酒糟生物质的纤维素酶生产菌的筛选研究[J].淮海工学院学报.(自然科学版),2006,15(4):51-54.
[2] 王海燕,王腾飞,王瑞明.酒糟废渣发酵生产有机肥的研究[J].酿酒科技,2007(8):142-143.
[3] 李政一,周定,侯文华.酒糟资源化研究[J].环境科学学报,2000,20(S1):145-149.
[4] 苏松,李开金,王晓均.白酒糟发酵条件的探索和发酵对营养成分的改善[J].四川畜牧兽医,2017,44(1):23-25.
[5] 高路,酒糟的综合利用[J].酿酒科技,2004(5):101-102.
[6] ZHANG Y H P, HIMMEL M E, MIELENZ J R. Outlook for cellulase improvement: Screening and selection strategies[J]. Biotechnology Advances, 2006, 24(5): 452-481.
[7] 汪善锋,陈安国.白酒糟资源的开发利用途径[J].饲料工业,2003,24(5):43-46.
[8] 吕军,文庭池,郭坤亮,等.酒糟生物有机肥和微生物菌剂对土壤微生物数量及高粱产量的影响[J].农业现代化研究,2013, 34(4):502-506.
[9] 王肇颖,肖敏.白酒酒糟的综合利用及其发展前景[J].酿酒科技,2004(1):65-67;64.
[10] 杨新,杨双全,陈莉,等.以酒糟为基质的高温型生物有机肥复合发酵菌剂的制备[J].食品与发酵工业,2019,45(9):242-249.
[11] 罗辉芬,张庆华,徐国华,等.白酒糟纤维素降解菌种的筛选[J].微生物学杂志,1997,17(4):19-22.
[12] 武香玉.纤维素酶产生菌的选育、发酵产酶条件及酶学性质的研究[D].北京:北京工商大学,2010.
[13] 程鹏,刘姗姗,王玉等.1株高产纤维素酶菌株的筛选鉴定及对稻秆降解的研究[J].华南农业大学学报,2019,40(1):84-91.
[14] 田云,曹林友,周赓,等.一株纤维素酶高产菌的筛选、鉴定与产酶研究[J].化学与生物工程,2016(7):34-39.
[15] 胡晓红,彭惠民,刘昕,等. PCR及Real-time PCR评价细菌DNA提取方法[J].重庆医科大学学报,2008,33(2):155-158.
[16] 沈雪亮,夏黎明.产纤维素酶细菌的筛选及酶学特性研究[J].林产化学与工业,2002, 22(1):47-51.
[17] 朱能武.堆肥微生物学研究现状与发展前景[J].氨基酸和生物资源,2005,27(4):36-40.
[18] 罗艳青,张丹,冯海玮,等.DNS法检测灰略红链霉菌JSD-1产纤维素酶的CMC酶活条件的优化[J].食品工业科技,2015,36(3):156-162.
[19] 穆春雷.低温产纤维素酶菌株的筛选、鉴定及纤维素酶学性质[J].微生物学通报,2013,40(7):1 193-1 201.
[20] 韩梦颖,王雨桐,高丽,等.降解秸秆微生物及秸秆腐熟剂的研究进展[J].南方农业学报,2017,48(6):1 024-1 030.