为开发新型高产β-葡萄糖苷酶的微生物菌种资源,本实验从腐木中分离获得1株产β-葡萄糖苷酶的青霉菌株L1;经等离子-硫酸二乙酯复合诱变后,利用七叶苷平板法初筛,摇瓶发酵复筛,最终获得1株可稳定遗传的突变菌株D-6,经单因素试验、Plackett-Burman试验、最陡爬坡试验和响应面试验确定了其发酵产酶最佳条件。结果表明,最佳产酶条件是:KH2PO4 6 g/L、MgSO4·7H2O 1 g/L、CaCl2 0.5 g/L、FeSO4 0.1 g/L,初始pH 5.2,接种量5%(孢子浓度108个/mL),碳源添加量(X1) 玉米秸秆45.74 g/L、氮源添加量(X2) (NH4)2SO4 7.23 g/L、装液量(X5) 63 mL/250 mL,发酵温度28 ℃,摇床转速160 r/min,发酵时间132 h,D-6菌株的β-葡萄糖苷酶活力为142.92 U/mL,较出发菌株L1提高了274.4%。研究结果为产β-葡萄糖苷酶菌株发酵条件优化提供技术参考,同时为该类菌株的开发和应用提供有效的菌种资源。
A Penicillium strain named L1 capable of producing β-glucosidase was isolated from rotten wood with the aim to study and develop microbial origin β-glucosidase resources. The strain was treated by atmospheric and room temperature plasma (ARTP) and diethyl sulfate (DES) mutation, followed by esculin agar plate screening and enzyme activity re-screening, a β-glucosidase high-yield mutant D-6 with genetic stability was obtained. By one-factor-at-a-time method, Plackett-Burman design, steepest ascent path and response surface methodology, the optimum conditions for β-glucosidase production in fermentation were determined. The optimal fermentation conditions were KH2PO4 6 g/L, MgSO4·7H2O 1 g/L, CaCl2 0.5 g/L and FeSO4 0.1 g/L; pH value of 5.2, inoculum 5% (spore concentration 108/mL), corn straw(X1) 45.74 g/L, (NH4)2SO4 7.23 g/L, packing volume(X5) 63 mL/250 mL, temperature 28 ℃, shaking speed is 160 r/min, incubation 132 h. Under the above conditions, the β-glucosidase activity of D-6 was 142.92 U/mL, with an increase of 274.4% compared with the original strain L1. The results obtained in the study were meaningful for technical reference and microbial resources of β-glucosidase producing strain.
[1] 苏敏,朴春红,梁德春,等.产β-葡萄糖苷酶酵母菌的分离鉴定及其在人参皂苷Rg3转化中的应用[J].食品科学,2018,39(14):172-178.
[2] 苏龙,梁广波,龙文英,等.产β-葡萄糖苷酶罗尔夫青霉发酵条件的优化[J].贵州农业科学,2017,45(2):105-111.
[3] SU Linhui,ZHAO Shuai,JIANG Suixin.et al.Cellulase with high β-glucosidase activity by Penicillium oxalicum under solid state fermentation and its use in hydrolysis of cassava residue[J].World J Microbiol Biotechnol,2017,33: 37.
[4] JUTURU V,WU J C.Microbial cellulases:Engineering,production and applications[J].Renewable and Sustainable Energy Reviews,2014,33:188-203.
[5] 刘欢,李皓,陈长武,何文兵.β-葡萄糖苷酶对‘双优’干红葡萄酒理化性质和香气物质的影响[J].食品与发酵工业,2018,44(11):138-146.
[6] RUCHI A,VERMA A K,SATLEWAL A.Application of nanoparticle-immobilized thermostable β-glucosidase for improving the sugarcane juice properties[J].Innovative Food Science and Emerging Technologies,2016,33:472-482.
[7] 姚瑶,霍元鹏,周伟,等.高产β-葡萄糖苷酶菌株的筛选及产酶条件优化[J].江西农业学报,2018,30(3):97-101.
[8] YAO Guangshan,WU Ruimei,KAN Qinbiao,et al.Production of a high-efficiency cellulase complex via β-glucosidase engineering in Penicillium oxalicum[J].Biotechnol Biofuels,2016,9:78.
[9] 李永博,李星,唐敏,等.浓香型大曲中产β-葡萄糖苷酶微生物的筛选鉴定及其产酶条件优化[J].食品科技,2017,42(12):17-22.
[10] 王凤梅,张邦建,岳泰新.葡萄酒相关酵母β-葡萄糖苷酶活性及影响因素研究[J].中国酿造,2018,37(7):83-87.
[11] ÇELIK A,DINÇER A,AYDEMIR T.Characterization of β-glucosidase immobilized on chitosan-multiwalled carbon nanotubes (MWCNTS) and their application on tea extracts for aroma enhancement[J].International Journal of Biological Macromolecules, 2016,89:406-414.
[12] 李豪,白光剑,吴静,等.紫外-常压室温等离子体复合诱变高产纤维素酶真菌[J].食品与发酵工业,2019,45(15):81-86.
[13] LI Xiangyu,LIU Ruijie,LI Jing,et al.Enhanced arachidonic acid production from Mortierella alpina combining atmospheric and room temperature plasma (ARTP) and diethyl sulfate treatments[J].Bioresource Technology,2015,177:134-140.
[14] 蒋汶,张庆庆,汤文晶,等.紫外-等离子体复合诱变红曲霉产胞外多糖[J].食品与发酵工业,2016,42(1):64-69.
[15] 宋欣,曲音波,袁晓华.一种将七叶苷用于高产β-葡萄糖苷酶产生菌的平板筛选的方法:CN,101177699A[P].2008-05-14.
[16] SINGH R S,CHAUHAN K.,JINDAL A.Response surface optimization of solid state fermentation for inulinase production from Penicillium oxalicum using corn bran[J].J Food Sci Technol,2018,55:2 533.
[17] BATRA J,BERI D,MISHRA S.Response surface methodology based optimization of β-Glucosidase production from Pichia pastoris[J].Appl Biochem Biotechnol,2014,172:380.
[18] PARK A R,PARK J H,AHN H J,et al.Enhancement of β-Glucosidase activity from a brown rot fungus Fomitopsis pinicola KCTC 6208 by medium optimization[J].Mycobiology,2015,43(1):57-62.
[19] 刘德海,郝益民,岳丹丹,等.一株产β-葡萄糖苷酶菌株的筛选及酶学性质研究[J].中国酿造,2013,32(6):47-51;60.
[20] 钟志敏,赖小平,黄松,等.石斛内生炭角菌DNA提取方法优化及分子鉴定[J].菌物学报,2018,37(1):73-78.
[21] 李慧芳,赵利娜,郑香峰,等.1株产桔青霉素扩展青霉的鉴定及其产毒条件优化[J].食品科学,2018,39(24):162-167.
[22] ZOU Zongsheng,ZHAO Yunying,ZHANG Tingzhou,et al.Efficient Isolation and Characterization of a Cellulase Hyperproducing Mutant Strain of Trichoderma reesei[J].Journal of Microbiology and Biotechnology,2018,28(9):1 473-1 481.
[23] 李聪,扶教龙,施磊,等.ε-聚赖氨酸生产菌的硫酸二乙酯诱变及其发酵培养基优化[J].中国调味品,2018,43(3):34-40.
[24] 熊建春.甘蔗威士忌酯香酵母菌的选育及发酵工艺研究[D].广州:华南理工大学,2010.