为获得具有潜在工业应用价值的碱性β-甘露聚糖酶产生菌株,从自然土样中分离得到1株产酶性状较好的碱性细菌,经形态学和分子生物学分析鉴定为科氏芽孢杆菌(Bacillus cohnii)。粗酶性质研究显示,该菌株所产β-甘露聚糖酶最适作用温度和pH分别在55 ℃和9.5。通过单因素和正交设计试验优化后,该菌株摇瓶发酵至36 h时,产酶水平为345 U/L,是优化前产酶水平的4.3倍。研究结果为碱性β-甘露聚糖酶的放大发酵奠定了基础,为碱性β-甘露聚糖酶编码基因的克隆及异源表达等相关研究提供了良好的菌种资源。
In this research, an alkaline β-mannanase-producing strain was obtained and studied for potential industrial application. An alkaline bacterium with good enzyme-producing properties was isolated from natural soil. The strain was further identified as Bacillus cohnii using morphological and molecular biological analysis. After optimization using single-factor method and orthogonal experimental design, the amount of enzyme produced using shaking flask fermentation for 36 h was 345 U/L, which was 4.3 times of that before optimization. The optimum condition of the crude β-mannanase extract was determined to be at 55 ℃ and pH of 9.5. The results laid a foundation for scale-up fermentation of alkaline β-mannanase and provided a good strain for cloning and heterologous expression of alkaline β-mannanase encoding gene.
[1] ADIGUZEL A, NADAROGLU H, ADIGUZEL G. Purification and characterization of β-mannanase from Bacillus pumilus (M27) and its applications in some fruit juices [J]. Journal Food Science & Technology, 2015, 52(8): 5 292-5 298.
[2] SRIVASTAVA P K, KAPOOR M. Production, properties, and applications of endo-β-mannanases [J]. Biotechnology Adv, 2017, 35(1): 1-19.
[3] MORRILL J, MANBERGER A, ROSENGREN A, et al. β-Mannanase-catalyzed synthesis of alkyl mannooligosides [J]. Applied Microbiology and Biotechnology, 2018, 102: 5 149-5 163.
[4] 杨少杰, 高海有,李晞,等. 甘露聚糖酶和木聚糖酶在纸浆漂白中的应用[J]. 造纸科学与技术, 2016, 35(4): 71-76.
[5] 王瑶, 王睿琪,那金,等. 甘露聚糖酶协同水解甘露聚糖研究进展[J]. 中国农学通报, 2017, 33(21): 21-26.
[6] 赵梅, 王春娟,董运海,等. 重组β-甘露聚糖酶制备低聚葡甘露糖工艺条件的优化[J]. 食品与生物技术学报, 2016, 35(7): 704-708.
[7] CHEN X, CAO Y, DING Y, et al. Cloning, functional expression and characterization of Aspergillus sulphureus β-mannanase in Pichia pastoris [J]. J Biotechnol, 2007, 128(3): 452-461.
[8] WANG Y, SHI P, LUO H, et al. Cloning, over-expression and characterization of an alkali-tolerant endo-β-1,4-mannanase from Penicillium freii F63 [J]. J Biosci and Bioeng, 2012, 113(6): 710-714.
[9] ENEYSKAYA E V, SUNDQVIST G, GOLUBEV A M, et al, Transglycosylating and hydrolytic activities of the β-mannosidase from Trichoderma reesei [J]. Biochimie, 2009, 91(5): 632-638.
[10] CHAUHAN P S, TRIPATHI S P, SANGAMWAR A T, et al. Cloning, molecular modeling, and docking analysis of alkali-thermostable β-mannanase from Bacillus nealsonii PN-11 [J]. Applied Microbiology Biotechnology, 2015, 99(21): 8 917-8 925.
[11] PIWPANKAEW Y, SAKULSITIRAT S, NITISINPRASERT S, et al. Cloning, secretory expression and characterization of recombinant β-mannanase from Bacillus circulans NT 6.7 [J]. SpringerPlus, 2014, 3(1): 430.
[12] YOO H Y, PRADEEP G C, KIM S W, et al. A novel low-molecular weight alkaline mannanase from Streptomyces tendae [J]. Biotechnology Bioprocess Erginering, 2015, 20: 453-461.
[13] PRADEEP G C, CHO S S, CHOI Y H,, et al. An extremely alkaline mannanase from Streptomyces sp. CS428 hydrolyzes galactomannan producing series of mannooligosaccharides [J]. World Journal Microbiology and Biotechnology, 2016, 32: 84.
[14] PHAM T A, BERRIN J G, RECORD E, et al. Hydrolysis of softwood by Aspergillus mannanase: role of a carbohydrate-binding module [J]. Journal of Biotechnology, 2010, 148(4): 163-170.
[15] WANG Y, SHU T, FAN P, et al. Characterization of a recombinant alkaline thermostable β-mannanase and its application in eco-friendly ramie degumming [J]. Process Biochemistry, 2017, 61: 73-79.
[16] 王丽仙, 李良川, 刘彝,等. 嗜碱杆菌甘露聚糖酶环境适应性及其对瓜尔胶的降解作用[J]. 华东理工大学学报(自然科学版), 2018, 44(5): 661-669.
[17] 沈萍, 陈向东. 微生物学实验(第4版)[M]. 北京:高等教育出版社, 2007.
[18] 萨姆布鲁克J,拉塞尔D W. 分子克隆实验指南(第三版) [M]. 北京:科学出版社, 2002.
[19] MILLER G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar [J]. Anal Chem, 1959, 31(3): 426-428.