分析与检测

基于COI 基因的丝网印刷电极生物传感器应用于肉品鉴别技术研究

  • 蒋娟娟 ,
  • 丁新怡 ,
  • 倪俊 ,
  • 董益阳 ,
  • 陈浣 ,
  • 闻红 ,
  • 刘佳蕙
展开
  • 1 (北京化工大学 生命科学与技术学院,北京,100029)
    2 (北京市广渠门中学,北京,100062)
    3 (北京大学 化学与分子工程学院,北京,100000)
蒋娟娟硕士研究生和丁新怡大学预科生为共同第一作者(董益阳教授为通讯作者,E-mail: yydong@mail.buct.edu.cn)。

收稿日期: 2019-06-09

  网络出版日期: 2020-02-11

基金资助

国家重点研发计划项目(2016YFF0203703);北京市翱翔计划课题(ZS20180018)

Application of screen-printed electrode biosensor combined with COI gene in meat identification technology

  • JIANG Juanjuan ,
  • DING Xinyi ,
  • NI Jun ,
  • DONG Yiyan ,
  • CHEN Huan ,
  • WEN Hong ,
  • LIU Jiahui
Expand
  • 1 (Beijing University of Chemical Technology, College of Life Science and Technology, Beijing 100029, China)
    2 (Beijing Guangqumen Middle School, Beijing 100062, China)
    3 (Peking University, College of Chemistry and Molecular Engineering, Beijing 100000, China)

Received date: 2019-06-09

  Online published: 2020-02-11

摘要

为了实现快速便捷鉴别混合肉的目的,尝试以动物线粒体 COI 基因为识别元件,以一次性丝网印刷生物传感器为器件,搭建鉴别猪肉和牛肉混合二元物的传感平台,并评价检测的灵敏度、选择性和商业应用前景。结果显示,生牛肉和生猪肉靶标序列在10-13~10-5 mol/L范围内与还原峰电流线性关系良好,牛肉鉴别的线性相关系数为0.961 36,猪肉鉴别的线性相关系数为0.987 4,检测限分别为5.048×10-14和3.491×10-14 mol/L;另设计模拟生猪肉/牛肉混合二元物掺假实验,当混合生肉量为50 ng时,活性染料亚甲基蓝的电信号值更加稳定, 对混合二元物的识别能力几乎不受掺假比例影响。结果表明,电化学传感技术的检测范围更广、可免去复杂的分子扩增中间实验、成本更低、操作技术更加简便化,故更加适合低比例掺假、现场快速检测要求。

本文引用格式

蒋娟娟 , 丁新怡 , 倪俊 , 董益阳 , 陈浣 , 闻红 , 刘佳蕙 . 基于COI 基因的丝网印刷电极生物传感器应用于肉品鉴别技术研究[J]. 食品与发酵工业, 2019 , 45(23) : 270 -275 . DOI: 10.13995/j.cnki.11-1802/ts.021296

Abstract

In order to identify mixed meat quickly and conveniently, this research attempted to build a sensor platform to identify binary blends of pork and beef, and to evaluate its specificity, sensitivity and commercial applications by using animal mitochondrial COI gene as recognition elements and disposable screen-printed electrode biosensors as devices. The research demonstrated that raw beef and raw pork with the target sequence in the range of 10-13-10-5 mol/L showed a good linear relationship with reduction peak current; the linear correlation of beef and pork were 0.961 36 and 0.987 4 respectively, while the detection limits were 5.048×10-14 mol/L and 3.491×10-14 mol/L respectively. The experiment was performed to simulate the adulteration of pork/beef mixture. When the amount of raw meat mixture was 50 ng, the electric signal value of the reactive dye methylene blue was more stable. On the other hand, when the adulteration ratio was less than 25% or greater than 25%, the binary mixture could be identified. The research reveals that the electrochemical sensor is a sensitively wide detecting, amplification-free, lower cost, and more convenient operation technology. Therefore, it is more in line with the requirements of low-proportion adulteration and rapid on-site detection.

参考文献

[1] National Bureau of Statistics. “Statistical Communiqué on National Economic and Social Development in 2018”[EB/OL]. [2019-02-28]. http://www.stats.gov.cn/tjsj/zxfb/201902/t20190228_1651265.html.
[2] LI Jianghua, ZHANG Peng, SUN Xiaoyu, et al. A review of current standard systems concerning meat and meat products in China [J]. MEAT RESEARCH, 2017, 31(5): 55-59.
[3] JAGADEESAN P. Horse meat scandal-A wake-up call for regulatory authorities[J]. Food Control, 2013, 34(2): 568-569.
[4] CAO Y, ZGENG K, JIANG J, et al. A novel method to detect meat adulteration by recombinase polymerase amplification and SYBR green I[J]. Food Chemistry, 2018, 266: 73-78.
[5] ALI M E, HASHIM U, MUSTAFA S, et al. Nanobiosensor for the detection and quantification of pork adulteration in meatball formulation[J]. Journal of Experimental Nanoscience, 2014,9(2): 152-160.
[6] WINTERS A, THOMSEN P, DAVIES W. A comparison of DNA-hybridization, immunodiffusion, countercurrent immune-electrophoresis and isoelectric focusing for detecting the admixture of pork to beef[J]. Meat Science, 1990, 27(1): 75-85.
[7] SHAHROOZ R, NURHIDAYATULLAILI M, WAGEEH A Y, et al. Identification of meat origin in food products-A review[J]. Food Control, 2016, 68: 379-390.
[8] DING W, KOU L, CAO B, et al. Meat quality parameters of descendants by grading hybridization of Boer goat and Guanzhong Dairy goat[J]. Meat Science, 2010, 84(3): 323-328.
[9] YIN R, SUN Y, YU S, et al. A validated strip-based lateral flow assay for the confirmation of sheep-specific PCR products for the authentication of meat[J]. Food Control, 2016, 60: 146-150.
[10] WANG Qi, ZHANG Xin, ZHANG Huiyuan, et al. Identification of 12 animal species meat by T-RFLP on the 12S rRNA gene[J]. Meat Science, 2010, 85(2): 265-269.
[11] MAHAJAN M V, GADEKAR Y P, DIGHE V D, et al. Molecular detection of meat animal species targeting MT 12S rRNA gene[J]. Meat Science, 2011, 88(1): 23-27.
[12] SOARES S, AMARAL J, OLIVEIRA M, et al. A SYBR green real-time PCR assay to detect and quantify pork meat in processed poultry meat products[J]. Meat Science, 2013, 94(1): 115-120.
[13] REN Junan, DENG Tingting, HUANG Wensheng, et al. A digital PCR method for identifying and quantifying adulteration of meat species in raw and processed food[J]. PLoS One, 2017,12(3): e01735.
[14] HEBERT P D N, CYWINSKA A, BALL S L, et al. Biological identifications through DNA barcodes [J]. Proceedings of the Royal Society of London-Series B: Biological Sciences, 2003, 270: 313-322.
[15] KRESS W J, WURDACK K J, ZIMMER E A, et al. Use of DNA barcodes to identify flowering plant[J]. Proceedings of the Natlional of Academy of Sciences, 2005, 102(23): 8 369-8 374.
[16] MARTIJN S, ALFRED J A, BARBARA G, et al. Advances in DNA metabarcoding for food and wildlife forensic species identification[J]. Anal Bioanal Chem, 2016, 408: 4 615-4 630.
[17] LEYLA S, FANG Zhichao, SUN Xuping, et al. Nanostructuring of patterned microelectrodes to enhance the sensitivity of electrochemical nucleic acids detection [J]. Angewandte Chemie, 2009, 121: 8 609-8 612.
[18] QIU Deyi, HU Jiang, LIU Dexing, et al. Application of DNA barcoding in anti-fraud identification of aquatic products [J]. Meat Science, 2013, 27(4): 40-43.
[19] NADIA H, IMAD N, BASSAM A S. Identification of meat species by PCR-RFLP of mitochondrial COI gene [J]. Meat Science, 2012, 90: 490-493.
[20] TIAN Chenxi, ZHOU Wei, WANG Shuang, et al. Techniques for identifying common meat adulterations based on DNA barcoding [J]. Modern Food Science and Technology, 2016, 32(8): 295-301.
[21] WU Naiying, GAO Wei, HE Xulun, et al. Direct electrochemical sensor for label-free DNA detection based on zero current potentiometry[J]. Biosensors and Bioelectronics, 2013, 39: 210-214.
[22] SCHONFELD J, ASHLOCK D. Classifying cytochrome C oxidase subunit 1 by translation initiation mechanism using side effect machines//Computational Intelligence in Bioinformatics and Computational Biology 2010 IEEE Conference on[C]. Canada: IEEE, 2010.
文章导航

/