壳聚糖酶在壳寡糖酶法制备过程中发挥重要作用,高效制备壳聚糖酶为其产业化应用奠定基础。采用同源克隆获得萎缩芽孢杆菌(Bacillus atrophaeus)Rk1壳聚糖酶基因(bacsn46)。将密码子优化和分子伴侣蛋白共表达进行结合,实现萎缩芽孢杆菌壳聚糖酶(BaCsn46)高效表达。通过表征分析获得重组BaCsn46酶学特性。bacsn46基因全长825个碱基,编码274个氨基酸,其中前32个氨基酸为信号肽序列。在7 L发酵罐条件下,重组菌最高发酵酶活力和总蛋白质量浓度分别达到7 356 U/mL和5.95 g/L。重组BaCsn46最适反应温度和pH分别是60 ℃和6.0,金属离子Mg2+和Mn2+对重组BaCsn46具有激活作用,重组BaCsn46最小和最适水解底物分别是壳四糖和95%脱乙酰度胶体壳聚糖。此外重组BaCsn46能够高效水解不同浓度胶体壳聚糖,制备不同聚合度壳寡糖。
[1] MOHAN K N, GANESAN A R, EZHILARASI P N, et al.Green and eco-friendly approaches for the extraction of chitin and chitosan:A review[J].Carbohydrate Polymers, 2022, 287:119349.
[2] KOU S, PETERS L M, MUCALO M R.Chitosan:A review of sources and preparation methods[J].International Journal of Biological Macromolecules, 2021, 169:85-94.
[3] AHMAD S I, AHMAD R, KHAN M S, et al.Chitin and its derivatives:Structural properties and biomedical applications[J].International Journal of Biological Macromolecules, 2020, 164:526-539.
[4] YUAN X B, ZHENG J P, JIAO S M, et al.A review on the preparation of chitosan oligosaccharides and application to human health, animal husbandry and agricultural production[J].Carbohydrate Polymers, 2019, 220:60-70.
[5] HAO W T, LI K C, LI P C.Review:Advances in preparation of chitooligosaccharides with heterogeneous sequences and their bioactivity[J].Carbohydrate Polymers, 2021, 252:117206.
[6] WANG J, WANG P, ZHU M, et al.Overexpression and biochemical properties of a GH46 chitosanase from marine Streptomyces hygroscopicus R1 suitable for chitosan oligosaccharides preparation[J].Frontiers in Microbiology, 2021, 12:816845.
[7] THADATHIL N, VELAPPAN S P.Recent developments in chitosanase research and its biotechnological applications:A review[J].Food Chemistry, 2014, 150:392-399.
[8] QIN Z, LUO S, LI Y, et al.Biochemical properties of a novel chitosanase from Bacillus amyloliquefaciens and its use in membrane reactor[J].LWT, 2018, 97:9-16.
[9] LI Y B, GOU Y, LIU Z C, et al.Structure-based rational design of chitosanase CsnMY002 for high yields of chitobiose[J].Colloids and Surfaces B:Biointerfaces, 2021, 202:111692.
[10] WANG J, LI X, CHEN H, et al.Heterologous expression and characterization of a high-efficiency chitosanase from Bacillus mojavensis SY1 suitable for production of chitosan oligosaccharides[J].Frontiers in Microbiology, 2021, 12:781138.
[11] VIENS P, LACOMBE-HARVEY M È, BRZEZINSKI R.Chitosanases from family 46 of glycoside hydrolases:From proteins to phenotypes[J].Marine Drugs, 2015, 13(11):6 566-6 587.
[12] GUO N, SUN J N, WANG W, et al.Cloning, expression and characterization of a novel chitosanase from Streptomyces albolongus ATCC 27414[J].Food Chemistry, 2019, 286:696-702.
[13] 赵宁, 王玉川, 易萍, 等.樟绒枝霉α-淀粉酶在毕赤酵母中的高效表达及在麦芽糖浆制备中的作用[J].食品与发酵工业, 2019, 45(2):1-6.
ZHAO N, WANG Y C, YI P, et al.High level expression of α-amylase from Malbranchea cinnamomea in Pichia pastoris and preparation of maltose syrup[J].Food and Fermentation Industries, 2019, 45(2):1-6.
[14] 赵一凡, 常晓娇, 杜稳, 等.毕赤酵母产伏马毒素B1羧酸酯酶发酵条件和培养基的优化[J].食品与发酵工业, 2021, 47(1):43-49.
ZHAO Y F, CHANG X J, DU W, et al.Optimization of fermentation condition and medium for fumonisin B1 carboxylesterase production in Pichia pastoris[J].Food and Fermentation Industries, 2021, 47(1):43-49.
[15] LUO S, QIN Z, CHEN Q, et al.High level production of a Bacillus amlyoliquefaciens chitosanase in Pichia pastoris suitable for chitooligosaccharides preparation[J].International Journal of Biological Macromolecules, 2020, 149:1 034-1 041.
[16] 苑馨瑶, 田康明, 金鹏, 等.黑曲霉低聚葡萄糖氧化酶的分子克隆与生化特征[J].食品与发酵工业, 2020, 46(1):30-35.
YUAN X Y, TIAN K M, JIN P, et al.Molecular cloning and characterization of gluco-oligosaccharide oxidase from Aspergillus niger[J].Food and Fermentation Industries, 2020, 46(1):30-35.
[17] WANG J R, WU Z Z, ZHANG T Y, et al.High-level expression of Thermomyces dupontii thermophilic lipase in Pichia pastoris via combined strategies[J].3 Biotech, 2019, 9(2):62.
[18] YANG G S, SUN H H, CAO R, et al.Characterization of a novel glycoside hydrolase family 46 chitosanase, Csn-BAC, from Bacillus sp.MD-5[J].International Journal of Biological Macromolecules, 2020, 146:518-523.
[19] SHINYA S, FUKAMIZO T.Interaction between chitosan and its related enzymes:A review[J].International Journal of Biological Macromolecules, 2017, 104:1 422-1 435.
[20] WEIKERT T, NIEHUES A, CORD-LANDWEHR S, et al.Reassessment of chitosanase substrate specificities and classification[J].Nature Communications, 2017, 8:1698.
[21] LI K C, XING R E, LIU S, et al.Size and pH effects of chitooligomers on antibacterial activity against Staphylococcus aureus[J].International Journal of Biological Macromolecules, 2014, 64:302-305.
[22] ZOU P, TIAN X Y, DONG B, et al.Size effects of chitooligomers with certain degrees of polymerization on the chilling tolerance of wheat seedlings[J].Carbohydrate Polymers, 2017, 160:194-202.
[23] LI K C, XING R E, LIU S, et al.Separation of chito-oligomers with several degrees of polymerization and study of their antioxidant activity[J].Carbohydrate Polymers, 2012, 88(3):896-903.
[24] WANG Y X, LUO X, ZHAO Y Q, et al.Integrated strategies for enhancing the expression of the AqCoA chitosanase in Pichia pastoris by combined optimization of molecular chaperones combinations and copy numbers via a novel plasmid pMC-GAP[J].Applied Biochemistry and Biotechnology, 2021, 193(12):4 035-4 051.
[25] DING M, ZHANG T, SUN C, et al.A Chitosanase mutant from Streptomyces sp.N174 prefers to produce functional chitopentasaccharide[J].International Journal of Biological Macromolecules, 2020, 151:1 091-1 098.