[1] UAUY R, KURPAD A, TANO-DEBRAH K, et al.Role of protein and amino acids in infant and young child nutrition:Protein and amino acid needs and relationship with child growth[J].Journal of Nutritional Science and Vitaminology, 2015, 61(Supplement):S192-S194.
[2] SPERRINGER J E, ADDINGTON A, HUTSON S M.Branched-chain amino acids and brain metabolism[J].Neurochemical Research, 2017, 42(6):1697-1709.
[3] THOMASSET B, SARAZIN C.Biodiversity of lipid species-Benefit for nutrition and effects on health[J].Biochimie, 2020, 178:1-3.
[4] DUAN Y, RAMILAN T, LUO J H, et al.Risk assessment approaches for evaluating cumulative exposures to multiple pesticide residues in agro-products using seasonal vegetable monitoring data from Hainan, China:A case study[J].Environmental Monitoring and Assessment, 2021, 193(9):578.
[5] VALLUZZI R L, FIERRO V, ARASI S, et al.Allergy to food additives[J].Current Opinion in Allergy and Clinical Immunology, 2019, 19(3):256-262.
[6] ARPAIA S.Environmental risk assessment in agro-ecosystems:Revisiting the concept of receiving environment after the EFSA guidance document[J].Ecotoxicology and Environmental Safety, 2021, 208:111676.
[7] AYOFEMI OLALEKAN ADEYEYE S.Aflatoxigenic fungi and mycotoxins in food:A review[J].Critical Reviews in Food Science and Nutrition, 2020, 60(5):709-721.
[8] CIFUENTES A. Food analysis and foodomics. Journal of Chromatography A, 2009, 1216(43): 7109.
[9] JIA W, WANG H, SHI L, et al.High-throughput foodomics strategy for screening flavor components in dairy products using multiple mass spectrometry[J].Food Chemistry, 2019, 279:1-11.
[10] IBÁÑEZ C, SIMÓ C, GARCÍA-CAÑAS V, et al. The role of direct high-resolution mass spectrometry in foodomics. Analytical and Bioanalytical Chemistry, 2015, 407(21): 6275-6287.
[11] CHANG W C W, WU H Y, YEH Y, et al.Untargeted foodomics strategy using high-resolution mass spectrometry reveals potential indicators for fish freshness[J].Analytica Chimica Acta, 2020, 1127:98-105.
[12] HERRERO M, SIMÓ C, GARCÍA-CAÑAS V, et al.Foodomics:MS-based strategies in modern food science and nutrition[J].Mass Spectrometry Reviews, 2012, 31(1):49-69.
[13] BRAGAGNOLO F S, FUNARI C S, IBÁÑEZ E, et al.Metabolomics as a tool to study underused soy parts:In search of bioactive compounds[J].Foods, 2021, 10(6):1308.
[14] CERRATO A, AITA S E, CAVALIERE C, et al.Comprehensive identification of native medium-sized and short bioactive peptides in sea bass muscle[J].Food Chemistry, 2021, 343:128443.
[15] AFZAAL M, SAEED F, HUSSAIN M, et al.Proteomics as a promising biomarker in food authentication, quality and safety:A review[J].Food Science & Nutrition, 2022,10(7):2333-2346.
[16] WANG K W, XU L, WANG X, et al.Discrimination of beef from different origins based on lipidomics:A comparison study of DART-QTOF and LC-ESI-QTOF[J].LWT, 2021, 149:111838.
[17] 王永芳,娄婷婷,温华蔚,等.LC-MS/MS测定牛奶中氟虫腈及代谢物残留量[J].中国乳品工业,2021,49(3):47-51.
WANG Y F, LOU T T, WEN H W, et al.Determination of fipronil and its metabolites residues in milk by liquid chromatography-tandem mass spectrometry[J].China Dairy Industry, 2021, 49(3):47-51.
[18] 贾玮,杨颖欢,曾桥,等.基于代谢组学方法分析14种辐照香辛料中的斑蝥素[J].陕西科技大学学报,2022,40(3):66-71.
JIA W, YANG Y H, ZENG Q, et al.Analysis of cantharidin of 14 irradiated spices based on metabonomics methods[J].Journal of Shaanxi University of Science & Technology, 2022, 40(3):66-71.
[19] 安婷婷,祖仲骐,陈琪,等.基于UPLC-Q-exactive orbitrap MS代谢组学分析冠突散囊菌发酵对黑茶代谢物和滋味品质的影响[C].中国食品科学技术学会第十八届年会摘要集,2022:514-515.
[20] MURITHI J M, OWEN E S, ISTVAN E S, et al.Combining stage specificity and metabolomic profiling to advance antimalarial drug discovery[J].Cell Chemical Biology, 2020, 27(2):158-171.e3.
[21] ALMUHAYAWI M S, HASSAN A H A, AL JAOUNI S K, et al.Influence of elevated CO2 on nutritive value and health-promoting prospective of three genotypes of Alfalfa sprouts (Medicago Sativa)[J].Food Chemistry, 2021, 340:128147.
[22] WILSON S R, OLSEN C, LUNDANES E.Nano liquid chromatography columns[J].The Analyst, 2019, 144(24):7090-7104.
[23] ŠESTÁK J, MORAVCOVÁ D, KAHLE V.Instrument platforms for nano liquid chromatography[J].Journal of Chromatography A, 2015, 1421:2-17.
[24] REINHOLDS I, JANSONS M, FEDORENKO D, et al.Mycotoxins in cereals and pulses harvested in Latvia by nanoLC-Orbitrap MS[J].Food Additives & Contaminants:Part B, 2021, 14(2):115-123.
[25] 赖博文,刘玢,梁永康.基于高分辨质谱的非靶向代谢组学在食品造假鉴定中的研究进展[J].生物技术通报,2019,35(2):192-197.
LAI B W, LIU B, LIANG Y K.Research progress on food fraud using non-targeted metabolomics based on high-resolution mass spectrometry[J].Biotechnology Bulletin, 2019, 35(2):192-197.
[26] RIVERA-PÉREZ A, ROMERO-GONZÁLEZ R, GARRIDO FRENICH A.Application of an innovative metabolomics approach to discriminate geographical origin and processing of black pepper by untargeted UHPLC-Q-Orbitrap-HRMS analysis and mid-level data fusion[J].Food Research International, 2021, 150:110722.
[27] ZHANG X N, LI X, SU M S, et al.A comparative UPLC-Q-TOF/MS-based metabolomics approach for distinguishing peach (Prunus persica (L.) Batsch) fruit cultivars with varying antioxidant activity[J].Food Research International, 2020, 137:109531.
[28] ALEMÁN-JIMÉNEZ C, DOMÍNGUEZ-PERLES R, FANTI F, et al.Unravelling the capacity of hydroxytyrosol and its lipophenolic derivates to modulate the H2O2-induced isoprostanoid profile of THP-1 monocytes by UHPLC-QqQ-MS/MS lipidomic workflow[J].Microchemical Journal, 2021, 170:106703.
[29] FAN F Y, HUANG C S, TONG Y L, et al.Widely targeted metabolomics analysis of white peony teas with different storage time and association with sensory attributes[J].Food Chemistry, 2021, 362:130257.
[30] CAJKA T, FIEHN O.Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics[J].Analytical Chemistry, 2016, 88(1):524-545.
[31] TAUTENHAHN R, BÖTTCHER C, NEUMANN S.Highly sensitive feature detection for high resolution LC/MS[J].BMC Bioinformatics, 2008, 9:504.
[32] RAMAKER H J, VAN SPRANG E N M, WESTERHUIS J A, et al.Dynamic time warping of spectroscopic BATCH data[J].Analytica Chimica Acta, 2003, 498(1-2):133-153.
[33] SKOV T, VAN DEN BERG F, TOMASI G, et al.Automated alignment of chromatographic data[J].Journal of Chemometrics, 2006, 20(11-12):484-497.
[34] EILERS P H C.Parametric time warping[J].Analytical Chemistry, 2004, 76(2):404-411.
[35] LEE J, PARK J, LIM M S, et al.Quantile normalization approach for liquid chromatography-mass spectrometry-based metabolomic data from healthy human volunteers[J].Analytical Sciences, 2012, 28(8):801-805.
[36] DI GUIDA R, ENGEL J, ALLWOOD J W, et al.Non-targeted UHPLC-MS metabolomic data processing methods:A comparative investigation of normalisation, missing value imputation, transformation and scaling[J].Metabolomics, 2016, 12(5):93.
[37] VAN DEN BERG R A, HOEFSLOOT H C J, WESTERHUIS J A, et al.Centering, scaling, and transformations:Improving the biological information content of metabolomics data[J].BMC Genomics, 2006, 7:142.
[38] AMBROISE J, BEARZATTO B, ROBERT A, et al.Impact of the spotted microarray preprocessing method on fold-change compression and variance stability[J].BMC Bioinformatics, 2011, 12:413.
[39] INOUE K, TANADA C, HOSOYA T, et al.Principal component analysis of molecularly based signals from infant formula contaminations using LC-MS and NMR in foodomics[J].Journal of the Science of Food and Agriculture, 2016, 96(11):3876-3881.
[40] MI S, SHANG K, LI X, et al.Characterization and discrimination of selected China′s domestic pork using an LC-MS-based lipidomics approach[J].Food Control, 2019, 100:305-314.
[41] BARBOSA S, SAURINA J, PUIGNOU L, et al.Classification and authentication of paprika by UHPLC-HRMS fingerprinting and multivariate calibration methods (PCA and PLS-DA)[J].Foods, 2020, 9(4):486.
[42] QUINTERO M, SANTANDER M J, VELÁSQUEZ S, et al.Exploring chemical markers related to the acceptance and sensory profiles of concentrated liquid coffees:An untargeted metabolomics approach[J].Foods, 2022, 11(3):473.
[43] BRIGANTE F I, PODIO N S, WUNDERLIN D A, et al.Comparative metabolite fingerprinting of chia, flax and sesame seeds using LC-MS untargeted metabolomics[J].Food Chemistry, 2022, 371:131355.
[44] LIEBAL U W, PHAN A N T, SUDHAKAR M, et al.Machine learning applications for mass spectrometry-based metabolomics[J].Metabolites, 2020, 10(6):243.
[45] ZHOU L, ZHANG C, LIU F, et al.Application of deep learning in food:A review[J].Comprehensive Reviews in Food Science and Food Safety, 2019, 18(6):1793-1811.
[46] COOK P W, NIGHTINGALE K K.Use of omics methods for the advancement of food quality and food safety[J].Animal Frontiers, 2018, 8(4):33-41.
[47] PINU F R.Early detection of food pathogens and food spoilage microorganisms:Application of metabolomics[J].Trends in Food Science & Technology, 2016, 54:213-215.
[48] 世界卫生组织.食品安全[EB/OL].(2020-4-30)[2022-6-5].https://www.who.int/zh/news-room/fact-sheets/detail/food-safety.
World Health Organization.Food Safety[EB/OL].(2020-4-30)[2022-6-5].https://www.who.int/zh/news-room/fact-sheets/detail/food-safety.
[49] GONZÁLEZ-CURBELO M Á, SOCAS-RODRÍGUEZ B, HERRERA-HERRERA A V, et al.Evolution and applications of the QuEChERS method[J].TrAC Trends in Analytical Chemistry, 2015, 71:169-185.
[50] MAN Y, LIANG G, LI A, et al.Analytical methods for the determination of Alternaria mycotoxins[J].Chromatographia, 2017, 80(1):9-22.
[51] ZHANG Z W, HU X F, ZHANG Q, et al.Determination for multiple mycotoxins in agricultural products using HPLC-MS/MS via a multiple antibody immunoaffinity column[J].Journal of Chromatography B, 2016, 1021:145-152.
[52] ALTAFINI A, GUERRINI A, CAPRAI E, et al.Ochratoxin A contamination of the casing and the edible portion of artisan Salamis produced in two Italian regions[J].World Mycotoxin Journal, 2020, 13(4):553-562.
[53] CHANG W C W, WU H Y, KAN H L, et al.Discovery of spoilage markers for chicken eggs using liquid chromatography-high resolution mass spectrometry-based untargeted and targeted foodomics[J].Journal of Agricultural and Food Chemistry, 2021, 69(14):4331-4341.
[54] VON EYKEN A, RAMACHANDRAN S, BAYEN S.Suspected-target screening for the assessment of plastic-related chemicals in honey[J].Food Control, 2020, 109:106941.
[55] BRAUN D, EISER M, PUNTSCHER H, et al.Natural contaminants in infant food:The case of regulated and emerging mycotoxins[J].Food Control, 2021, 123:107676.
[56] WANG T T, DUEDAHL-OLESEN L, LAURITZ FRANDSEN H.Targeted and non-targeted unexpected food contaminants analysis by LC/HRMS:Feasibility study on rice[J].Food Chemistry, 2021, 338:127957.
[57] CHEN H P, GAO G W, LIU P X, et al.Development and validation of an ultra performance liquid chromatography Q-Exactive Orbitrap mass spectrometry for the determination of fipronil and its metabolites in tea and chrysanthemum[J].Food Chemistry, 2018, 246:328-334.
[58] DASENAKI M E, THOMAIDIS N S.Multi-residue determination of 115 veterinary drugs and pharmaceutical residues in milk powder, butter, fish tissue and eggs using liquid chromatography-tandem mass spectrometry[J].Analytica Chimica Acta, 2015, 880:103-121.
[59] SHU N X, CHEN X Y, SUN X, et al.Metabolomics identify landscape of food sensory properties[J].Critical Reviews in Food Science and Nutrition, 2022:1-11.
[60] 陈丽君, 邓吉斯, 金子涵, 等. 基于代谢组学研究蔬菜面条在高温贮藏环境中的变化. 食品与发酵工业, 2023, 49(16): 206-213.
CHEN L J, DENG J S, JIN Z H, et al. Metabolomics-based study of changes in vegetable noodles during storage under high-temperature conditions. Food and Fermentation Industries, 2023, 49(16): 206-213.
[61] WANG H J, HUA J J, YU Q Y, et al.Widely targeted metabolomic analysis reveals dynamic changes in non-volatile and volatile metabolites during green tea processing[J].Food Chemistry, 2021, 363:130131.
[62] TOFFANO R, HILLESHEIM E, MATHIAS M, et al.Validation of the Brazilian healthy eating index-revised using biomarkers in children and adolescents[J].Nutrients, 2018, 10(2):154.
[63] FENG X Y, YU Q Q, LI B, et al.Comparative analysis of carotenoids and metabolite characteristics in discolored red pepper and normal red pepper based on non-targeted metabolomics[J].LWT, 2022, 153:112398.
[64] LIU Z H, SUN J H, TENG Z, et al.Identification of marker compounds for predicting browning of fresh-cut lettuce using untargeted UHPLC-HRMS metabolomics[J].Postharvest Biology and Technology, 2021, 180:111626.
[65] MONTORO P, D′URSO G, KOWALCZYK A, et al.LC-ESI/LTQ-Orbitrap-MS based metabolomics in evaluation of bitter taste of Arbutus unedo honey[J].Molecules, 2021, 26(9):2765.
[66] WINSTEL D, CAPELLO Y, QUIDEAU S, et al.Isolation of a new taste-active brandy tannin A:Structural elucidation, quantitation and sensory assessment[J].Food Chemistry, 2022, 377:131963.
[67] SEGLA KOFFI DOSSOU S, XU F T, YOU J, et al.Widely targeted metabolome profiling of different colored sesame (Sesamum indicum L.) seeds provides new insight into their antioxidant activities[J].Food Research International, 2022, 151:110850.
[68] KRITIKOU E, KALOGIOURI N P, KOLYVIRA L, et al.Target and suspect hrms metabolomics for the determination of functional ingredients in 13 varieties of olive leaves and drupes from greece[J].Molecules, 2020, 25(21):4889.
[69] MARVIN H J P, BOUZEMBRAK Y, JANSSEN E M, et al.A holistic approach to food safety risks:Food fraud as an example[J].Food research international, 2016, 89:463-470.
[70] JIA W, DONG X Y, SHI L, et al.Discrimination of milk from different animal species by a foodomics approach based on high-resolution mass spectrometry[J].Journal of Agricultural and Food Chemistry, 2020, 68(24):6 638-6 645.
[71] DIAS C, MENDES L.Protected designation of origin (PDO), protected geographical indication (PGI) and traditional speciality guaranteed (TSG):A bibiliometric analysis[J].Food Research International, 2018, 103:492-508.
[72] 任欣, 张敏, 关丽娜, 等. 东北稻谷挥发性有机化合物代谢组学指纹图谱的地理鉴别.中国食品科学技术学会第十八届年会摘要集, 2022:538-539.
[73] CAVANNA D, LOFFI C, DALL′ASTA C, et al.A non-targeted high-resolution mass spectrometry approach for the assessment of the geographical origin of durum wheat[J].Food Chemistry, 2020, 317:126366.
[74] CUBERO-LEON E, DE RUDDER O, MAQUET A.Metabolomics for organic food authentication:Results from a long-term field study in carrots[J].Food Chemistry, 2018, 239:760-770.
[75] STELLA R, MASTRORILLI E, PRETTO T, et al.New strategies for the differentiation of fresh and frozen/thawed fish:Non-targeted metabolomics by LC-HRMS (part B)[J].Food Control, 2022, 132:108461.
[76] ROCCHETTI G, REBECCHI A, DALLOLIO M, et al.Changes in the chemical and sensory profile of ripened Italian salami following the addition of different microbial starters[J].Meat Science, 2021, 180:108584.
[77] SCHÜTZ D, ACHTEN E, CREYDT M, et al.Non-targeted LC-MS metabolomics approach towards an authentication of the geographical origin of grain maize (Zea mays L.) samples[J].Foods, 2021, 10(9):2160.
[78] WANG K W, XU Z Z.Comparison of freshly squeezed, Non-thermally and thermally processed orange juice based on traditional quality characters, untargeted metabolomics, and volatile overview[J].Food Chemistry, 2022, 373:131430.
[79] PÉREZ-MÍGUEZ R, CASTRO-PUYANA M, SÁNCHEZ-LÓPEZ E, et al.Untargeted HILIC-MS-based metabolomics approach to evaluate coffee roasting process:Contributing to an integrated metabolomics multiplatform[J].Molecules, 2020, 25(4):887.
[80] ROCCHETTI G, GALLO A, NOCETTI M, et al.Milk metabolomics based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry to discriminate different cows feeding regimens[J].Food Research International, 2020, 134:109279.
[81] DONG X Y, WANG X J, XU X L, et al.An untargeted metabolomics approach to identify markers to distinguish duck eggs that come from different poultry breeding systems by ultra high performance liquid chromatography-high resolution mass spectrometry[J].Journal of Chromatography B, 2021, 1179:122820.
[82] DANIELE C, DANTE C, CHIARA D, et al.Egg product freshness evaluation:A metabolomic approach[J].Journal of Mass Spectrometry, 2018, 53(9):849-861.
[83] WINDARSIH A, WARMIKO H D, INDRIANINGSIH A W, et al.Untargeted metabolomics and proteomics approach using liquid chromatography-Orbitrap high resolution mass spectrometry to detect pork adulteration in Pangasius hypopthalmus meat[J].Food Chemistry, 2022, 386:132856.