综述与专题评论

基于液相色谱-质谱联用法的食品代谢组学研究进展

  • 周宗贤 ,
  • 何洪源 ,
  • 赵霞 ,
  • 黄家栋 ,
  • 张桄滕
展开
  • 1(中国人民公安大学 侦查学院,北京,100038)
    2(国家毒品实验室北京分中心,北京,100164)
第一作者:硕士研究生(何洪源教授和赵霞正高级警务技术任职资格为共同通信作者,E-mail:13311296819@189.cn;lubin_fast@sohu.com)

收稿日期: 2022-10-06

  修回日期: 2022-10-14

  网络出版日期: 2023-12-25

基金资助

中央高校基本科研业务费项目(2022 JKF02005)

Research progress of liquid chromatography-mass spectrometry-based metabolomics in food science

  • ZHOU Zongxian ,
  • HE Hongyuan ,
  • ZHAO Xia ,
  • HUANG Jiadong ,
  • ZHANG Guangteng
Expand
  • 1(School of Criminal Investigation, People’s Public Security University of China, Beijing 100038, China)
    2(National Anti-Drug Laboratory Beijing Regional Center, Beijing 100164, China)

Received date: 2022-10-06

  Revised date: 2022-10-14

  Online published: 2023-12-25

摘要

随着经济全球化,食品工业也呈现出全球化发展趋势。随着人民生活水平的不断提高,人们更加关注食品的质量和安全,这就需要将新的技术和方法应用到食品科学研究领域。基于液相色谱-质谱的代谢组学是获取人类代谢组和研究食品科学的一种强有力的工具,在食品安全、食品质量、食品真实性和食品溯源方面发挥着重要的作用。食品分析中的靶向或非靶向代谢组学方法有着各自的优势和局限,选择与目标分析物相匹配的分析平台至关重要。该文综述了近年来基于液相色谱-质谱的代谢组学研究现状,并展望了食品代谢组学的最新应用趋势。

本文引用格式

周宗贤 , 何洪源 , 赵霞 , 黄家栋 , 张桄滕 . 基于液相色谱-质谱联用法的食品代谢组学研究进展[J]. 食品与发酵工业, 2023 , 49(22) : 348 -356 . DOI: 10.13995/j.cnki.11-1802/ts.033860

Abstract

With the globalization of the economy, the food industry has also shown a global development trend. The continuous improvement of people’s living standards makes people pay more attention to the quality and safety of food, which requires the application of new technologies and methods to the field of food science research. Liquid chromatography-mass spectrometry-based metabolomics is a powerful tool for obtaining human metabolome and studying food science, which plays an important role in food safety, food quality, food authenticity, and food traceability. Targeted or non-targeted metabolomics methods in food analysis have their advantages and limitations, and it is crucial to choose the appropriate analytical platform that matches the target analytes. This paper reviewed the current status of liquid chromatography-mass spectrometry-based metabolomics research in recent years and outlined the latest trends in the application of food metabolomics.

参考文献

[1] UAUY R, KURPAD A, TANO-DEBRAH K, et al.Role of protein and amino acids in infant and young child nutrition:Protein and amino acid needs and relationship with child growth[J].Journal of Nutritional Science and Vitaminology, 2015, 61(Supplement):S192-S194.
[2] SPERRINGER J E, ADDINGTON A, HUTSON S M.Branched-chain amino acids and brain metabolism[J].Neurochemical Research, 2017, 42(6):1697-1709.
[3] THOMASSET B, SARAZIN C.Biodiversity of lipid species-Benefit for nutrition and effects on health[J].Biochimie, 2020, 178:1-3.
[4] DUAN Y, RAMILAN T, LUO J H, et al.Risk assessment approaches for evaluating cumulative exposures to multiple pesticide residues in agro-products using seasonal vegetable monitoring data from Hainan, China:A case study[J].Environmental Monitoring and Assessment, 2021, 193(9):578.
[5] VALLUZZI R L, FIERRO V, ARASI S, et al.Allergy to food additives[J].Current Opinion in Allergy and Clinical Immunology, 2019, 19(3):256-262.
[6] ARPAIA S.Environmental risk assessment in agro-ecosystems:Revisiting the concept of receiving environment after the EFSA guidance document[J].Ecotoxicology and Environmental Safety, 2021, 208:111676.
[7] AYOFEMI OLALEKAN ADEYEYE S.Aflatoxigenic fungi and mycotoxins in food:A review[J].Critical Reviews in Food Science and Nutrition, 2020, 60(5):709-721.
[8] CIFUENTES A. Food analysis and foodomics. Journal of Chromatography A, 2009, 1216(43): 7109.
[9] JIA W, WANG H, SHI L, et al.High-throughput foodomics strategy for screening flavor components in dairy products using multiple mass spectrometry[J].Food Chemistry, 2019, 279:1-11.
[10] IBÁÑEZ C, SIMÓ C, GARCÍA-CAÑAS V, et al. The role of direct high-resolution mass spectrometry in foodomics. Analytical and Bioanalytical Chemistry, 2015, 407(21): 6275-6287.
[11] CHANG W C W, WU H Y, YEH Y, et al.Untargeted foodomics strategy using high-resolution mass spectrometry reveals potential indicators for fish freshness[J].Analytica Chimica Acta, 2020, 1127:98-105.
[12] HERRERO M, SIMÓ C, GARCÍA-CAÑAS V, et al.Foodomics:MS-based strategies in modern food science and nutrition[J].Mass Spectrometry Reviews, 2012, 31(1):49-69.
[13] BRAGAGNOLO F S, FUNARI C S, IBÁÑEZ E, et al.Metabolomics as a tool to study underused soy parts:In search of bioactive compounds[J].Foods, 2021, 10(6):1308.
[14] CERRATO A, AITA S E, CAVALIERE C, et al.Comprehensive identification of native medium-sized and short bioactive peptides in sea bass muscle[J].Food Chemistry, 2021, 343:128443.
[15] AFZAAL M, SAEED F, HUSSAIN M, et al.Proteomics as a promising biomarker in food authentication, quality and safety:A review[J].Food Science & Nutrition, 2022,10(7):2333-2346.
[16] WANG K W, XU L, WANG X, et al.Discrimination of beef from different origins based on lipidomics:A comparison study of DART-QTOF and LC-ESI-QTOF[J].LWT, 2021, 149:111838.
[17] 王永芳,娄婷婷,温华蔚,等.LC-MS/MS测定牛奶中氟虫腈及代谢物残留量[J].中国乳品工业,2021,49(3):47-51.
WANG Y F, LOU T T, WEN H W, et al.Determination of fipronil and its metabolites residues in milk by liquid chromatography-tandem mass spectrometry[J].China Dairy Industry, 2021, 49(3):47-51.
[18] 贾玮,杨颖欢,曾桥,等.基于代谢组学方法分析14种辐照香辛料中的斑蝥素[J].陕西科技大学学报,2022,40(3):66-71.
JIA W, YANG Y H, ZENG Q, et al.Analysis of cantharidin of 14 irradiated spices based on metabonomics methods[J].Journal of Shaanxi University of Science & Technology, 2022, 40(3):66-71.
[19] 安婷婷,祖仲骐,陈琪,等.基于UPLC-Q-exactive orbitrap MS代谢组学分析冠突散囊菌发酵对黑茶代谢物和滋味品质的影响[C].中国食品科学技术学会第十八届年会摘要集,2022:514-515.
[20] MURITHI J M, OWEN E S, ISTVAN E S, et al.Combining stage specificity and metabolomic profiling to advance antimalarial drug discovery[J].Cell Chemical Biology, 2020, 27(2):158-171.e3.
[21] ALMUHAYAWI M S, HASSAN A H A, AL JAOUNI S K, et al.Influence of elevated CO2 on nutritive value and health-promoting prospective of three genotypes of Alfalfa sprouts (Medicago Sativa)[J].Food Chemistry, 2021, 340:128147.
[22] WILSON S R, OLSEN C, LUNDANES E.Nano liquid chromatography columns[J].The Analyst, 2019, 144(24):7090-7104.
[23] ŠESTÁK J, MORAVCOVÁ D, KAHLE V.Instrument platforms for nano liquid chromatography[J].Journal of Chromatography A, 2015, 1421:2-17.
[24] REINHOLDS I, JANSONS M, FEDORENKO D, et al.Mycotoxins in cereals and pulses harvested in Latvia by nanoLC-Orbitrap MS[J].Food Additives & Contaminants:Part B, 2021, 14(2):115-123.
[25] 赖博文,刘玢,梁永康.基于高分辨质谱的非靶向代谢组学在食品造假鉴定中的研究进展[J].生物技术通报,2019,35(2):192-197.
LAI B W, LIU B, LIANG Y K.Research progress on food fraud using non-targeted metabolomics based on high-resolution mass spectrometry[J].Biotechnology Bulletin, 2019, 35(2):192-197.
[26] RIVERA-PÉREZ A, ROMERO-GONZÁLEZ R, GARRIDO FRENICH A.Application of an innovative metabolomics approach to discriminate geographical origin and processing of black pepper by untargeted UHPLC-Q-Orbitrap-HRMS analysis and mid-level data fusion[J].Food Research International, 2021, 150:110722.
[27] ZHANG X N, LI X, SU M S, et al.A comparative UPLC-Q-TOF/MS-based metabolomics approach for distinguishing peach (Prunus persica (L.) Batsch) fruit cultivars with varying antioxidant activity[J].Food Research International, 2020, 137:109531.
[28] ALEMÁN-JIMÉNEZ C, DOMÍNGUEZ-PERLES R, FANTI F, et al.Unravelling the capacity of hydroxytyrosol and its lipophenolic derivates to modulate the H2O2-induced isoprostanoid profile of THP-1 monocytes by UHPLC-QqQ-MS/MS lipidomic workflow[J].Microchemical Journal, 2021, 170:106703.
[29] FAN F Y, HUANG C S, TONG Y L, et al.Widely targeted metabolomics analysis of white peony teas with different storage time and association with sensory attributes[J].Food Chemistry, 2021, 362:130257.
[30] CAJKA T, FIEHN O.Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics[J].Analytical Chemistry, 2016, 88(1):524-545.
[31] TAUTENHAHN R, BÖTTCHER C, NEUMANN S.Highly sensitive feature detection for high resolution LC/MS[J].BMC Bioinformatics, 2008, 9:504.
[32] RAMAKER H J, VAN SPRANG E N M, WESTERHUIS J A, et al.Dynamic time warping of spectroscopic BATCH data[J].Analytica Chimica Acta, 2003, 498(1-2):133-153.
[33] SKOV T, VAN DEN BERG F, TOMASI G, et al.Automated alignment of chromatographic data[J].Journal of Chemometrics, 2006, 20(11-12):484-497.
[34] EILERS P H C.Parametric time warping[J].Analytical Chemistry, 2004, 76(2):404-411.
[35] LEE J, PARK J, LIM M S, et al.Quantile normalization approach for liquid chromatography-mass spectrometry-based metabolomic data from healthy human volunteers[J].Analytical Sciences, 2012, 28(8):801-805.
[36] DI GUIDA R, ENGEL J, ALLWOOD J W, et al.Non-targeted UHPLC-MS metabolomic data processing methods:A comparative investigation of normalisation, missing value imputation, transformation and scaling[J].Metabolomics, 2016, 12(5):93.
[37] VAN DEN BERG R A, HOEFSLOOT H C J, WESTERHUIS J A, et al.Centering, scaling, and transformations:Improving the biological information content of metabolomics data[J].BMC Genomics, 2006, 7:142.
[38] AMBROISE J, BEARZATTO B, ROBERT A, et al.Impact of the spotted microarray preprocessing method on fold-change compression and variance stability[J].BMC Bioinformatics, 2011, 12:413.
[39] INOUE K, TANADA C, HOSOYA T, et al.Principal component analysis of molecularly based signals from infant formula contaminations using LC-MS and NMR in foodomics[J].Journal of the Science of Food and Agriculture, 2016, 96(11):3876-3881.
[40] MI S, SHANG K, LI X, et al.Characterization and discrimination of selected China′s domestic pork using an LC-MS-based lipidomics approach[J].Food Control, 2019, 100:305-314.
[41] BARBOSA S, SAURINA J, PUIGNOU L, et al.Classification and authentication of paprika by UHPLC-HRMS fingerprinting and multivariate calibration methods (PCA and PLS-DA)[J].Foods, 2020, 9(4):486.
[42] QUINTERO M, SANTANDER M J, VELÁSQUEZ S, et al.Exploring chemical markers related to the acceptance and sensory profiles of concentrated liquid coffees:An untargeted metabolomics approach[J].Foods, 2022, 11(3):473.
[43] BRIGANTE F I, PODIO N S, WUNDERLIN D A, et al.Comparative metabolite fingerprinting of chia, flax and sesame seeds using LC-MS untargeted metabolomics[J].Food Chemistry, 2022, 371:131355.
[44] LIEBAL U W, PHAN A N T, SUDHAKAR M, et al.Machine learning applications for mass spectrometry-based metabolomics[J].Metabolites, 2020, 10(6):243.
[45] ZHOU L, ZHANG C, LIU F, et al.Application of deep learning in food:A review[J].Comprehensive Reviews in Food Science and Food Safety, 2019, 18(6):1793-1811.
[46] COOK P W, NIGHTINGALE K K.Use of omics methods for the advancement of food quality and food safety[J].Animal Frontiers, 2018, 8(4):33-41.
[47] PINU F R.Early detection of food pathogens and food spoilage microorganisms:Application of metabolomics[J].Trends in Food Science & Technology, 2016, 54:213-215.
[48] 世界卫生组织.食品安全[EB/OL].(2020-4-30)[2022-6-5].https://www.who.int/zh/news-room/fact-sheets/detail/food-safety.
World Health Organization.Food Safety[EB/OL].(2020-4-30)[2022-6-5].https://www.who.int/zh/news-room/fact-sheets/detail/food-safety.
[49] GONZÁLEZ-CURBELO M Á, SOCAS-RODRÍGUEZ B, HERRERA-HERRERA A V, et al.Evolution and applications of the QuEChERS method[J].TrAC Trends in Analytical Chemistry, 2015, 71:169-185.
[50] MAN Y, LIANG G, LI A, et al.Analytical methods for the determination of Alternaria mycotoxins[J].Chromatographia, 2017, 80(1):9-22.
[51] ZHANG Z W, HU X F, ZHANG Q, et al.Determination for multiple mycotoxins in agricultural products using HPLC-MS/MS via a multiple antibody immunoaffinity column[J].Journal of Chromatography B, 2016, 1021:145-152.
[52] ALTAFINI A, GUERRINI A, CAPRAI E, et al.Ochratoxin A contamination of the casing and the edible portion of artisan Salamis produced in two Italian regions[J].World Mycotoxin Journal, 2020, 13(4):553-562.
[53] CHANG W C W, WU H Y, KAN H L, et al.Discovery of spoilage markers for chicken eggs using liquid chromatography-high resolution mass spectrometry-based untargeted and targeted foodomics[J].Journal of Agricultural and Food Chemistry, 2021, 69(14):4331-4341.
[54] VON EYKEN A, RAMACHANDRAN S, BAYEN S.Suspected-target screening for the assessment of plastic-related chemicals in honey[J].Food Control, 2020, 109:106941.
[55] BRAUN D, EISER M, PUNTSCHER H, et al.Natural contaminants in infant food:The case of regulated and emerging mycotoxins[J].Food Control, 2021, 123:107676.
[56] WANG T T, DUEDAHL-OLESEN L, LAURITZ FRANDSEN H.Targeted and non-targeted unexpected food contaminants analysis by LC/HRMS:Feasibility study on rice[J].Food Chemistry, 2021, 338:127957.
[57] CHEN H P, GAO G W, LIU P X, et al.Development and validation of an ultra performance liquid chromatography Q-Exactive Orbitrap mass spectrometry for the determination of fipronil and its metabolites in tea and chrysanthemum[J].Food Chemistry, 2018, 246:328-334.
[58] DASENAKI M E, THOMAIDIS N S.Multi-residue determination of 115 veterinary drugs and pharmaceutical residues in milk powder, butter, fish tissue and eggs using liquid chromatography-tandem mass spectrometry[J].Analytica Chimica Acta, 2015, 880:103-121.
[59] SHU N X, CHEN X Y, SUN X, et al.Metabolomics identify landscape of food sensory properties[J].Critical Reviews in Food Science and Nutrition, 2022:1-11.
[60] 陈丽君, 邓吉斯, 金子涵, 等. 基于代谢组学研究蔬菜面条在高温贮藏环境中的变化. 食品与发酵工业, 2023, 49(16): 206-213.
CHEN L J, DENG J S, JIN Z H, et al. Metabolomics-based study of changes in vegetable noodles during storage under high-temperature conditions. Food and Fermentation Industries, 2023, 49(16): 206-213.
[61] WANG H J, HUA J J, YU Q Y, et al.Widely targeted metabolomic analysis reveals dynamic changes in non-volatile and volatile metabolites during green tea processing[J].Food Chemistry, 2021, 363:130131.
[62] TOFFANO R, HILLESHEIM E, MATHIAS M, et al.Validation of the Brazilian healthy eating index-revised using biomarkers in children and adolescents[J].Nutrients, 2018, 10(2):154.
[63] FENG X Y, YU Q Q, LI B, et al.Comparative analysis of carotenoids and metabolite characteristics in discolored red pepper and normal red pepper based on non-targeted metabolomics[J].LWT, 2022, 153:112398.
[64] LIU Z H, SUN J H, TENG Z, et al.Identification of marker compounds for predicting browning of fresh-cut lettuce using untargeted UHPLC-HRMS metabolomics[J].Postharvest Biology and Technology, 2021, 180:111626.
[65] MONTORO P, D′URSO G, KOWALCZYK A, et al.LC-ESI/LTQ-Orbitrap-MS based metabolomics in evaluation of bitter taste of Arbutus unedo honey[J].Molecules, 2021, 26(9):2765.
[66] WINSTEL D, CAPELLO Y, QUIDEAU S, et al.Isolation of a new taste-active brandy tannin A:Structural elucidation, quantitation and sensory assessment[J].Food Chemistry, 2022, 377:131963.
[67] SEGLA KOFFI DOSSOU S, XU F T, YOU J, et al.Widely targeted metabolome profiling of different colored sesame (Sesamum indicum L.) seeds provides new insight into their antioxidant activities[J].Food Research International, 2022, 151:110850.
[68] KRITIKOU E, KALOGIOURI N P, KOLYVIRA L, et al.Target and suspect hrms metabolomics for the determination of functional ingredients in 13 varieties of olive leaves and drupes from greece[J].Molecules, 2020, 25(21):4889.
[69] MARVIN H J P, BOUZEMBRAK Y, JANSSEN E M, et al.A holistic approach to food safety risks:Food fraud as an example[J].Food research international, 2016, 89:463-470.
[70] JIA W, DONG X Y, SHI L, et al.Discrimination of milk from different animal species by a foodomics approach based on high-resolution mass spectrometry[J].Journal of Agricultural and Food Chemistry, 2020, 68(24):6 638-6 645.
[71] DIAS C, MENDES L.Protected designation of origin (PDO), protected geographical indication (PGI) and traditional speciality guaranteed (TSG):A bibiliometric analysis[J].Food Research International, 2018, 103:492-508.
[72] 任欣, 张敏, 关丽娜, 等. 东北稻谷挥发性有机化合物代谢组学指纹图谱的地理鉴别.中国食品科学技术学会第十八届年会摘要集, 2022:538-539.
[73] CAVANNA D, LOFFI C, DALL′ASTA C, et al.A non-targeted high-resolution mass spectrometry approach for the assessment of the geographical origin of durum wheat[J].Food Chemistry, 2020, 317:126366.
[74] CUBERO-LEON E, DE RUDDER O, MAQUET A.Metabolomics for organic food authentication:Results from a long-term field study in carrots[J].Food Chemistry, 2018, 239:760-770.
[75] STELLA R, MASTRORILLI E, PRETTO T, et al.New strategies for the differentiation of fresh and frozen/thawed fish:Non-targeted metabolomics by LC-HRMS (part B)[J].Food Control, 2022, 132:108461.
[76] ROCCHETTI G, REBECCHI A, DALLOLIO M, et al.Changes in the chemical and sensory profile of ripened Italian salami following the addition of different microbial starters[J].Meat Science, 2021, 180:108584.
[77] SCHÜTZ D, ACHTEN E, CREYDT M, et al.Non-targeted LC-MS metabolomics approach towards an authentication of the geographical origin of grain maize (Zea mays L.) samples[J].Foods, 2021, 10(9):2160.
[78] WANG K W, XU Z Z.Comparison of freshly squeezed, Non-thermally and thermally processed orange juice based on traditional quality characters, untargeted metabolomics, and volatile overview[J].Food Chemistry, 2022, 373:131430.
[79] PÉREZ-MÍGUEZ R, CASTRO-PUYANA M, SÁNCHEZ-LÓPEZ E, et al.Untargeted HILIC-MS-based metabolomics approach to evaluate coffee roasting process:Contributing to an integrated metabolomics multiplatform[J].Molecules, 2020, 25(4):887.
[80] ROCCHETTI G, GALLO A, NOCETTI M, et al.Milk metabolomics based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry to discriminate different cows feeding regimens[J].Food Research International, 2020, 134:109279.
[81] DONG X Y, WANG X J, XU X L, et al.An untargeted metabolomics approach to identify markers to distinguish duck eggs that come from different poultry breeding systems by ultra high performance liquid chromatography-high resolution mass spectrometry[J].Journal of Chromatography B, 2021, 1179:122820.
[82] DANIELE C, DANTE C, CHIARA D, et al.Egg product freshness evaluation:A metabolomic approach[J].Journal of Mass Spectrometry, 2018, 53(9):849-861.
[83] WINDARSIH A, WARMIKO H D, INDRIANINGSIH A W, et al.Untargeted metabolomics and proteomics approach using liquid chromatography-Orbitrap high resolution mass spectrometry to detect pork adulteration in Pangasius hypopthalmus meat[J].Food Chemistry, 2022, 386:132856.
文章导航

/