研究报告

姜黄素介导的光动力技术对牡蛎汁中副溶血性弧菌生物被膜的清除

  • 唐杰峰 ,
  • 陈博文 ,
  • 陈璐 ,
  • 张涵 ,
  • 王敬敬 ,
  • 赵勇
展开
  • 1(上海海洋大学 食品学院,上海,201306)
    2(佛山科学技术学院,广东 佛山,528225)
第一作者:硕士研究生(赵勇教授和王敬敬副教授为共同通信作者,E-mail:yzhao@shou.edu.cn;jjwang@fosu.edu.cn

收稿日期: 2023-09-24

  修回日期: 2023-10-16

  网络出版日期: 2024-10-10

基金资助

广东省自然科学基金项目(20201910240000319);国家自然科学基金项目(3210160807)

Inactivation effects of curcumin-mediated photodynamic technology on Vibrio parahaemolyticus biofilm formed in oyster juice

  • TANG Jiefeng ,
  • CHEN Bowen ,
  • CHEN Lu ,
  • ZHANG Han ,
  • WANG Jingjing ,
  • ZHAO Yong
Expand
  • 1(College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China)
    2(College of Food Science and Engineering, Foshan University of Science and Technology, Foshan 528225, China)

Received date: 2023-09-24

  Revised date: 2023-10-16

  Online published: 2024-10-10

摘要

副溶血性弧菌是水产品中常见的食源性致病菌,该研究以水产品中常见的牡蛎为研究对象,建立了牡蛎汁中副溶血性弧菌生物被膜的生长模型,并采用新型高效的姜黄素介导的光动力灭活(photodynamic inactivation, PDI)技术以清除牡蛎汁中形成的成熟副溶血性弧菌生物被膜。通过结晶紫染色、噻唑蓝[3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide,MTT]法研究副溶血性弧菌在牡蛎汁以及胰蛋白胨大豆肉汤(trypticase soy broth, TSB)培养基中生物被膜形成能力和细胞活力的差异,并探究PDI处理副溶血性弧菌生物被膜前后的生物被膜量、基因表达水平、细胞形态和被膜结构参数的变化。结果表明,与TSB培养基相比,在牡蛎汁中能够形成细胞活力更强的生物被膜,并且在姜黄素浓度为20 μmol/L、蓝光照射60 min(13.68 J/cm2)条件下,PDI处理对牡蛎汁中形成的副溶血性弧菌生物被膜量清除率为>83%。此外,PDI处理还下调了氧化应激相关基因(grx Asod C)和SOS反应基因(lex A),破坏了生物被膜的三维结构,其生物体积、厚度和质构熵降低,均一性增加。以上结果表明,姜黄素介导的光动力具有良好地清除牡蛎中副溶血性弧菌生物被膜的效果,该研究为预防副溶血性弧菌引起的食源性疾病及水产品保鲜提供了借鉴方法与思路。

本文引用格式

唐杰峰 , 陈博文 , 陈璐 , 张涵 , 王敬敬 , 赵勇 . 姜黄素介导的光动力技术对牡蛎汁中副溶血性弧菌生物被膜的清除[J]. 食品与发酵工业, 2024 , 50(17) : 31 -38 . DOI: 10.13995/j.cnki.11-1802/ts.037468

Abstract

Vibrio parahaemolyticus represents a common pathogenic bacterium found in aquatic products.In this study, we selected oysters as our research model and established a growth model for V.parahaemolyticus biofilm in oyster juice.We further introduced a novel curcumin-mediated photodynamic inactivation (PDI) approach to eliminate the mature V.parahaemolyticus biofilm present in the oyster juice.Using crystal violet staining and MTT assays, we assessed the capacity for biofilm formation and cell viability in both oyster juice and TSB medium.Subsequent investigations focused on quantifying biofilm biomass, elucidating gene expression levels, and characterizing cell morphology as well as biofilm structural parameters.Our findings revealed a more robust biofilm formation in oyster juice as compared to the TSB medium.Remarkably, over 83% of the V.parahaemolyticus biofilm in oyster juice was eradicated after PDI treatment using a concentration of 20.0 μmol/L curcumin and 60 min (13.68 J/cm2) blue LED irradiation.Notably, the PDI treatment downregulated oxidative stress-related genes (grx A and sod C) and SOS response genes (lex A) within the biofilm cells.This treatment also compromised the three-dimensional architecture of the biofilm, with evident reductions in bio-volume, thickness, and textural entropy, while concurrently enhancing its homogeneity.This approach offers a novel method for mitigating foodborne diseases caused by V.parahaemolyticus and improving the preservation of aquatic products.

参考文献

[1] GU D, ZHANG Y B, WANG Q Y, et al.S-nitrosylation-mediated activation of a histidine kinase represses the type 3 secretion system and promotes virulence of an enteric pathogen[J].Nature Communications, 2020, 11(1):5777.
[2] 陈莉莉, 陈江, 孙亮, 等.新冠疫情下浙江省食源性疾病暴发事件流行病学特征分析[J].中国食品卫生杂志, 2023, 35(4):613-618.
CHEN L L, CHEN J, SUN L, et al.Epidemiological characteristics of foodborne disease outbreaks in Zhejiang Province during the COVID-19 pandemic[J].Chinese Journal of Food Hygiene, 2023, 35(4):613-618.
[3] 蔡泽瑜, 张明, 张春雨.2012—2020年南京市鼓楼区食源性疾病暴发事件流行病学分析[J].江苏预防医学, 2021, 32(3):345-346;371.
CAI Z Y, ZHANG M, ZHANG C Y.Epidemiological analysis of food-borne disease outbreaks in Gulou district of Nanjing from 2012 to 2020[J].Jiangsu Journal of Preventive Medicine, 2021, 32(3):345-346;371.
[4] 金淋奇, 陈笑南, 金晓敏, 等.温州市瓯海区食源性疾病监测结果分析[J].中国卫生检验杂志, 2022, 32(17):2164-2168.
JIN L Q, CHEN X N, JIN X M, et al.Surveillance results analysis of foodborne diseases in Ouhai District, Wenzhou City[J].Chinese Journal of Health Laboratory Technology, 2022, 32(17):2164-2168.
[5] 吕静, 赵黎芳, 刘芸, 等.2016—2020年上海市闵行区食源性疾病主动监测病原学及流行病学特征分析[J].上海预防医学, 2023, 35(2):169-174.
LYU J, ZHAO L F, LIU Y, et al.Epidemiologic and etiologic characteristics of foodborne diseases in Minhang, Shanghai 2016—2020[J].Shanghai Journal of Preventive Medicine, 2023, 35(2):169-174.
[6] DINER R E, ZIMMER-FAUST A, COOKSEY E, et al.Host and water microbiota are differentially linked to potential human pathogen accumulation in oysters[J].Applied and Environmental Microbiology, 2023, 89(7):e0031823.
[7] WANG D, FLINT S H, PALMER J S, et al.Global expansion of Vibrio parahaemolyticus threatens the seafood industry:Perspective on controlling its biofilm formation[J].LWT, 2022, 158:113182.
[8] FLEMMING H C, WINGENDER J, SZEWZYK U, et al.Biofilms:An emergent form of bacterial life[J].Nature Reviews.Microbiology, 2016, 14(9):563-575.
[9] SEIDI DAMYEH M, MEREDDY R, NETZEL M E, et al.An insight into curcumin-based photosensitization as a promising and green food preservation technology[J].Comprehensive Reviews in Food Science and Food Safety, 2020, 19(4):1727-1759.
[10] HUANG J M, CHEN B W, LI H H, et al.Enhanced antibacterial and antibiofilm functions of the curcumin-mediated photodynamic inactivation against Listeria monocytogenes[J].Food Control, 2020, 108:106886.
[11] CHEN B W, HUANG J M, LI H H, et al.Eradication of planktonic Vibrio parahaemolyticus and its sessile biofilm by curcumin-mediated photodynamic inactivation[J].Food Control, 2020, 113:107181.
[12] CHEN L, DONG Q F, SHI Q D, et al.Novel 2, 3-dialdehyde cellulose-based films with photodynamic inactivation potency by incorporating the β-cyclodextrin/curcumin inclusion complex[J].Biomacromolecules, 2021, 22(7):2790-2801.
[13] YAN Y Y, TAN L J, LI H H, et al.Photodynamic inactivation of planktonic Staphylococcus aureus by sodium magnesium chlorophyllin and its effect on the storage quality of lettuce[J].Photochemical & Photobiological Sciences:Official Journal of the European Photochemistry Association and the European Society for Photobiology, 2021, 20(6):761-771.
[14] BROWN H L, REUTER M, SALT L J, et al.Chicken juice enhances surface attachment and biofilm formation of Campylobacter jejuni[J].Applied and Environmental Microbiology, 2014, 80(22):7053-7060.
[15] TAN L J, LI H H, CHEN B W, et al.Dual-species biofilms formation of Vibrio parahaemolyticus and Shewanella putrefaciens and their tolerance to photodynamic inactivation[J].Food Control, 2021, 125:107983.
[16] HAN Q, SONG X Y, ZHANG Z H, et al.Removal of foodborne pathogen biofilms by acidic electrolyzed water[J].Frontiers in Microbiology, 2017, 8:988.
[17] KIM H S, PARK H D.Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14[J].PLoS One, 2013, 8(9):e76106.
[18] CHEN P, WANG J J, HONG B, et al.Characterization of mixed-species biofilm formed by Vibrio parahaemolyticus and Listeria monocytogenes[J].Frontiers in Microbiology, 2019, 10:2543.
[19] BEYENAL H, LEWANDOWSKI Z, HARKIN G.Quantifying biofilm structure:Facts and fiction[J].Biofouling, 2004, 20(1):1-23.
[20] HAMAMOTO A, BANDOU C, NAKANO M, et al.Differences in stress response after UVC or UVA irradiation in Vibrio parahaemolyticus[J].Environmental Microbiology Reports, 2010, 2(5):660-666.
[21] BUCHOVEC I, LUKSEVICIŪTĖ V, KOKSTAITE R, et al.Inactivation of Gram (-) bacteria Salmonella enterica by chlorophyllin-based photosensitization:Mechanism of action and new strategies to enhance the inactivation efficiency[J].Journal of Photochemistry and Photobiology.B: Biology, 2017, 172:1-10.
[22] FLEMMING H C, WINGENDER J.The biofilm matrix[J].Nature Reviews Microbiology, 2010, 8(9):623-633.
[23] 渠宏雁, 孟良玉, 刘锦峰, 等.副溶血性弧菌生物被膜的形成与优化[J].中国食品学报, 2013, 13(9):56-61.
QU H Y, MENG L Y, LIU J F, et al.Research on the formation and optimization of Vibrio parahaemolyticus biofilm[J].Journal of Chinese Institute of Food Science and Technology, 2013, 13(9):56-61.
[24] 高璐, 欧阳敏, 张辉, 等.胁迫生长条件下副溶血性弧菌的生物特性分析[J].食品科学, 2018, 39(6):177-182.
GAO L, OUYANG M, ZHANG H, et al.Biological characteristics of Vibrio parahaemolyticus during growth in adverse environment[J].Food Science, 2018, 39(6):177-182.
[25] MAO F, BAO Y B, WONG N K, et al.Large-scale plasma peptidomic profiling reveals a novel, nontoxic, Crassostrea hongkongensis-derived antimicrobial peptide against foodborne pathogens[J].Marine Drugs, 2021, 19(8):420.
[26] FULAZ S, VITALE S, QUINN L, et al.Nanoparticle-biofilm interactions:The role of the EPS matrix[J].Trends in Microbiology, 2019, 27(11):915-926.
[27] 檀利军, 胡钰梅, 陈博文, 等.姜黄素介导的光动力技术对副溶血性弧菌与腐败希瓦氏菌的杀灭效果[J].食品科学, 2022, 43(3):83-91.
TAN L J, HU Y M, CHEN B W, et al.Inactivation of curcumin-mediated photodynamic technology on Vibrio parahaemolyticus and Shewanella putrefaciens[J].Food Science, 2022, 43(3):83-91.
[28] KAUSHIK V, TIWARI M, TIWARI V.Interaction of RecA mediated SOS response with bacterial persistence, biofilm formation, and host response[J].International Journal of Biological Macromolecules, 2022, 217:931-943.
[29] TAO K.oxyR-dependent induction of Escherichia coli grx gene expression by peroxide stress[J].Journal of Bacteriology, 1997, 179(18):5967-5970.
文章导航

/