研究报告

负载柚皮素的表没食子儿茶素没食子酸酯共价修饰的玉米醇溶蛋白-透明质酸复合纳米颗粒的构建与表征

  • 李文洁 ,
  • 赵渊 ,
  • 付连霏 ,
  • 贾慧铭 ,
  • 关颖 ,
  • 王迪 ,
  • 陈辰 ,
  • 樊金玲 ,
  • 张彬
展开
  • 1(河南科技大学 食品与生物工程学院,河南 洛阳,471000)
    2(河南科技大学 农学院/牡丹学院,河南 洛阳,471000)
第一作者:硕士研究生(张彬副教授和樊金玲教授为共同通信作者,E-mail:bzhang@haust.edu.cn;fanjinling@haust.edu.cn)

收稿日期: 2024-03-05

  修回日期: 2024-04-14

  网络出版日期: 2024-10-10

基金资助

国家自然科学基金项目(31701536);河南科技大学大学生创新创业训练项目(srtp)(2023199)

Fabrication and characterization of naringenin-loaded gallocatechin-gallate covalently modified zein-hyaluronic acid composite nanoparticles

  • LI Wenjie ,
  • ZHAO Yuan ,
  • FU Lianfei ,
  • JIA Huiming ,
  • GUAN Ying ,
  • WANG Di ,
  • CHEN Chen ,
  • FAN Jinling ,
  • ZHANG Bin
Expand
  • 1(College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China)
    2(College of Agriculture/College of Tree Peony, Henan University of Science and Technology, Luoyang 471000, China)

Received date: 2024-03-05

  Revised date: 2024-04-14

  Online published: 2024-10-10

摘要

柚皮素具有良好的生物活性和治疗作用,但同时也具有水溶性差、生物利用率低等缺点。因此,建立简单、高效的递送方式对于柚皮素的广泛应用至关重要。该研究通过反溶剂沉淀法制备了负载柚皮素的表没食子儿茶素没食子酸酯(epigallocatechin gallate,EGCG)共价修饰的玉米醇溶蛋白-透明质酸(hyaluronic acid,HA)复合纳米颗粒。与没食子酸和单宁酸共价修饰相比,EGCG修饰后玉米醇溶蛋白具有低游离氨基含量和高多酚当量,修饰效果良好。EGCG共价修饰的玉米醇溶蛋白和HA通过静电作用、氢键和疏水相互作用形成复合纳米颗粒,其粒径在180~240 nm,且当两者质量比为10∶1时,粒径最小(183.62 nm)。由于EGCG的共价修饰,复合纳米颗粒对柚皮素的包埋率和负载能力均明显提高,且在柚皮素与EGCG共价修饰的玉米醇溶蛋白质量比为1∶10或以下时,包埋率>99%。结构表征显示,绝大部分柚皮素被包埋在复合纳米颗粒内部,且与EGCG和玉米醇溶蛋白之间存在氢键和疏水相互作用。抗氧化性测定表明,负载柚皮素的复合纳米颗粒的抗氧化能力显著高于游离柚皮素。因此,采用EGCG修饰的玉米醇溶蛋白-HA体系负载柚皮素对柚皮素的抗氧化能力具有促进作用。

本文引用格式

李文洁 , 赵渊 , 付连霏 , 贾慧铭 , 关颖 , 王迪 , 陈辰 , 樊金玲 , 张彬 . 负载柚皮素的表没食子儿茶素没食子酸酯共价修饰的玉米醇溶蛋白-透明质酸复合纳米颗粒的构建与表征[J]. 食品与发酵工业, 2024 , 50(17) : 139 -147 . DOI: 10.13995/j.cnki.11-1802/ts.039097

Abstract

Naringenin is a natural flavonoid possessing good biological activities and therapeutic effects.However, naringenin has poor water solubility and low bioavailability, so it is very important to establish a simple and efficient delivery method for the application of naringenin.In this study, gallocatechin gallate (EGCG) covalently modified zein-hyaluronic acid (HA) composite nanoparticles loaded with naringenin were prepared by an anti-solvent precipitation method.Compared with gallic acid and tannic acid, the zein modified by EGCG had low free amino content and high polyphenol equivalent, and the modification effect was good.The size of the composite nanoparticles, which were formed via electrostatic interaction, hydrogen bonding and hydrophobic interaction, was between 180 and 240 nm, and the smallest particle size (183.62 nm) was obtained when the mass ratio of EGCG modified zein to HA was 10∶1.Due to the covalent modification of zein by EGCG, the encapsulation efficiency and loading capacity of the composite nanoparticles for naringenin were significantly improved, and the encapsulation efficiency was greater than 99% when the mass ratio of naringenin to the EGCG modified zein was 1∶10 or less.Structural characterization showed that most of naringenin was embedded inside the composite nanoparticles, and there were hydrogen bonds and hydrophobic interactions between naringenin, and EGCG or zein.The antioxidant activity of the composite nanoparticles loaded with naringenin was significantly higher than that of free naringenin, indicating that the EGCG modified zein-HA composite nanoparticles loaded with naringenin had an improved effect on the antioxidant activity of naringenin.

参考文献

[1] ZAIDUN N H, THENT Z C, LATIFF A A.Combating oxidative stress disorders with citrus flavonoid:Naringenin[J].Life Sciences, 2018, 208:111-122.
[2] UÇAR K, GÖKTAŞ Z.Biological activities of naringenin:A narrative review based on in vitro and in vivo studies[J].Nutrition Research, 2023, 119:43-55.
[3] BHIA M, MOTALLEBI M, ABADI B, et al.Naringenin nano-delivery systems and their therapeutic applications[J].Pharmaceutics, 2021, 13(2):291.
[4] IRACHE J M, GONZÁLEZ-NAVARRO C J.Zein nanoparticles as vehicles for oral delivery purposes[J].Nanomedicine, 2017, 12(11):1209-1211.
[5] JIANG F Y, YANG L L, WANG S Y, et al.Fabrication and characterization of zein-alginate oligosaccharide complex nanoparticles as delivery vehicles of curcumin[J].Journal of Molecular Liquids, 2021, 342:116937.
[6] ZHANG S L, HAN Y.Preparation, characterisation and antioxidant activities of rutin-loaded zein-sodium caseinate nanoparticles[J].PLoS One, 2018, 13(3):e0194951.
[7] YE G Y, WU T L, LI Z H, et al.Preparation and characterization of novel composite nanoparticles using zein and hyaluronic acid for efficient delivery of naringenin[J].Food Chemistry, 2023, 417:135890.
[8] YAN X J, ZHANG X L, MCCLEMENTS D J, et al.Co-encapsulation of epigallocatechin gallate (EGCG) and curcumin by two proteins-based nanoparticles:Role of EGCG[J].Journal of Agricultural and Food Chemistry, 2019, 67(48):13228-13236.
[9] LIU F G, WANG D, SUN C X, et al.Utilization of interfacial engineering to improve physicochemical stability of β-carotene emulsions:Multilayer coatings formed using protein and protein-polyphenol conjugates[J].Food Chemistry, 2016, 205:129-139.
[10] REN Y T, ZHAO Y, WU Y W, et al.Novel lysozyme-mannooligosaccharide conjugate with improved antimicrobial activity:Preparation and characterization[J].Journal of Food Measurement and Characterization, 2020, 14(5):2529-2537.
[11] TEIXEIRA N, MATEUS N, DE FREITAS V, et al.Wine industry by-product:Full polyphenolic characterization of grape stalks[J].Food Chemistry, 2018, 268:110-117.
[12] SUN C X, DAI L, GAO Y X.Binary complex based on zein and propylene glycol alginate for delivery of quercetagetin[J].Biomacromolecules, 2016, 17(12):3973-3985.
[13] LIU F G, SUN C X, YANG W, et al.Structural characterization and functional evaluation of lactoferrin-polyphenol conjugates formed by free-radical graft copolymerization[J].RSC Advances, 2015, 5(20):15641-15651.
[14] SEKOWSKI S, IONOV M, KASZUBA M, et al.Biophysical studies of interaction between hydrolysable tannins isolated from Oenothera gigas and Geranium sanguineum with human serum albumin[J].Colloids and Surfaces.B, Biointerfaces, 2014, 123:623-628.
[15] CHEN B C, LI H J, DING Y P, et al.Formation and microstructural characterization of whey protein isolate/beet pectin coacervations by laccase catalyzed cross-linking[J].LWT - Food Science and Technology, 2012, 47(1):31-38.
[16] CHEN S, HAN Y H, WANG Y Q, et al.Zein-hyaluronic acid binary complex as a delivery vehicle of quercetagetin:Fabrication, structural characterization, physicochemical stability and in vitro release property[J].Food Chemistry, 2019, 276:322-332.
[17] CHEN S, XU C Q, MAO L K, et al.Fabrication and characterization of binary composite nanoparticles between zein and shellac by anti-solvent co-precipitation[J].Food and Bioproducts Processing, 2018, 107:88-96.
[18] MOUSTAFA M A, EL-REFAIE W M, ELNAGGAR Y S R, et al.Fucoidan/hyaluronic acid cross-linked zein nanoparticles loaded with fisetin as a novel targeted nanotherapy for oral cancer[J].International Journal of Biological Macromolecules, 2023, 241:124528.
[19] SUN C X, DAI L, GAO Y X.Interaction and formation mechanism of binary complex between zein and propylene glycol alginate[J].Carbohydrate Polymers, 2017, 157:1638-1649.
[20] LAWSON M K.Improvement of therapeutic value of quercetin with chitosan nanoparticle delivery systems and potential applications[J].International Journal of Molecular Sciences, 2023, 24(4):3293.
[21] LIU Q Y, ZHANG X R, XUE J W, et al.Exploring the intrinsic micro-/ nanoparticle size on their in vivo fate after lung delivery[J].Journal of Controlled Release:Official Journal of the Controlled Release Society, 2022, 347:435-448.
[22] WANG L, ZHANG Y.Heat-induced self-assembly of zein nanoparticles:Fabrication, stabilization and potential application as oral drug delivery[J].Food Hydrocolloids, 2019, 90:403-412.
[23] SMRUTHI M R, NALLAMUTHU I, ANAND T.A comparative study of optimized naringenin nanoformulations using nano-carriers (PLA/PVA and zein/pectin) for improvement of bioavailability[J].Food Chemistry, 2022, 369:130950.
[24] MENG R, WU Z Z, XIE Q T, et al.Preparation and characterization of zein/carboxymethyl dextrin nanoparticles to encapsulate curcumin:Physicochemical stability, antioxidant activity and controlled release properties[J].Food Chemistry, 2021, 340:127893.
[25] LIU F G, SUN C X, WANG D, et al.Glycosylation improves the functional characteristics of chlorogenic acid-lactoferrin conjugate[J].RSC Advances, 2015, 5(95):78215-78228.
文章导航

/