综述与专题评论

磁弹性生物传感器在食品检测中的研究进展

  • 曹永连 ,
  • 唐佳灵 ,
  • 饶钧玥 ,
  • 杨茂杰 ,
  • 曹芸榕 ,
  • 韩国全
展开
  • (四川农业大学 食品学院,四川 雅安,625014)
第一作者:硕士研究生(韩国全副教授为通信作者,E-mail:hans_980306@sicau.edu.cn)

收稿日期: 2023-12-19

  修回日期: 2024-01-13

  网络出版日期: 2024-10-29

Advances in magnetoelastic biosensors for food detection

  • CAO Yonglian ,
  • TANG Jialing ,
  • RAO Junyue ,
  • YANG Maojie ,
  • CAO Yunrong ,
  • HAN Guoquan
Expand
  • (College of Food, Sichuan Agricultural University,Ya'an 625014, China)

Received date: 2023-12-19

  Revised date: 2024-01-13

  Online published: 2024-10-29

摘要

对引起食品安全问题的主要污染物,如食源性病原体、重金属残留、农药/兽药残留等进行快速而有效的检测是减少食品安全事故发生的重要监控点,高效、灵敏和准确的检测方法对食品检测领域意义重大。近年来,磁弹性生物传感器由于其无毒、低成本、便携、高灵敏度、高准确性和特异性以及可与无线网络连接等特点逐渐成为研究热点。该文主要介绍磁弹性生物传感器的工作原理及其在食品检测应用中的研究进展,以期为食品检测领域提供新思路。

本文引用格式

曹永连 , 唐佳灵 , 饶钧玥 , 杨茂杰 , 曹芸榕 , 韩国全 . 磁弹性生物传感器在食品检测中的研究进展[J]. 食品与发酵工业, 2024 , 50(19) : 371 -380 . DOI: 10.13995/j.cnki.11-1802/ts.038297

Abstract

Rapid and effective detection of major contaminants causing food safety problems, such as foodborne pathogens, heavy metal residues, pesticide/veterinary drug residues, etc., is an important monitoring point to reduce food safety accidents, and efficient, sensitive and accurate detection methods are of great significance in the field of food testing.In recent years, magnetoelastic biosensors have gradually become a research hotspot due to their non-toxicity, low cost, portability, high sensitivity, high accuracy and specificity, and the ability to be connected to wireless networks.This paper focuses on the working principle of magnetoelastic biosensor and their research progress in food detection applications, with a view to providing new ideas in the field of food monitoring.

参考文献

[1] GALLO M, FERRARA L, CALOGERO A, et al.Relationships between food and diseases:What to know to ensure food safety[J].Food Research International, 2020, 137:109414.
[2] BACANLı M, BAŞARAN N.Importance of antibiotic residues in animal food[J].Food and Chemical Toxicology:an International Journal Published for the British Industrial Biological Research Association, 2019, 125:462-466.
[3] LIU S, ZHAO K X, HUANG M Y, et al.Research progress on detection techniques for point-of-care testing of foodborne pathogens[J].Frontiers in Bioengineering and Biotechnology, 2022, 10:958134.
[4] 王吉, 李慧慧, 朱文娟, 等.基于噬菌体的电化学生物传感器在检测食源性病原菌中的研究进展[J].食品科学, 2022, 43(7):254-262.
WANG J, LI H H, ZHU W J, et al.Progress in the development and application of bacteriophage-based electrochemical biosensors for detection of foodborne pathogenic bacteria[J].Food Science, 2022, 43(7):254-262.
[5] BHALLA N, JOLLY P, FORMISANO N, et al.Introduction to biosensors[J].Essays in Biochemistry, 2016, 60(1):1-8.
[6] ALI A A, ALTEMIMI A B, ALHELFI N, et al.Application of biosensors for detection of pathogenic food bacteria:A review[J].Biosensors, 2020, 10(6):58.
[7] RUBAB M, SHAHBAZ H M, OLAIMAT A N, et al.Biosensors for rapid and sensitive detection of Staphylococcus aureus in food[J].Biosensors & Bioelectronics, 2018, 105:49-57.
[8] HUANG Y C, VOICULESCU I, ONO T.Joule magnetostriction and volume magnetostriction of Iron Gallium thin films[J].Journal of Magnetism and Magnetic Materials, 2023, 588:171419.
[9] BULAI G, CALTUN O F.Magnetostriction effects in ferrites[M]//Ferrite Nanostructured Magnetic Materials.Amsterdam:Elsevier, 2023:651-667.
[10] LIU C, SHEN T, WU H B, et al.Applications of magneto-strictive, magneto-optical, magnetic fluid materials in optical fiber current sensors and optical fiber magnetic field sensors:A review[J].Optical Fiber Technology, 2021, 65:102634.
[11] KHOMENKO M R, PANKRATOV N Y, KARPENKOV A Y, et al.Structural and magnetostrictive properties of intermetallic (Tb, Ho)(Fe, Co)2 compounds[J].Physica B:Condensed Matter, 2023, 669:415198.
[12] 王华. 磁弹性生物传感器的仿真与实验研究[D].无锡:江南大学, 2019.
WANG H.Simulation and experimental study on magnetoelastic biosensor[D].Wuxi:Jiangnan University, 2019.
[13] 郭星. 磁弹性传感器表面优化设计及其在生化检测中的应用研究[D].太原:太原理工大学, 2019.
GUO X.Study on surface optimization design of magnetoelastic sensor and its application in biochemical detection[D].Taiyuan:Taiyuan University of Technology, 2019.
[14] TZANIS A, ZEIBEKIS M, PILIDI A, et al.Villari magnetomechanical coupling at hcp-Cobalt thin films on flexible substrates[J].Materials Science and Engineering:B, 2021, 264:114945.
[15] ZHOU Y H, ZHAO X, XU J, et al.Giant magnetoelastic effect in soft systems for bioelectronics[J].Nature Materials, 2021, 20(12):1670-1676.
[16] BARANDIARAN J M, GUTIERREZ J, GÓMEZ-POLO C.New sensors based on the magnetoelastic resonance of metallic glasses[J].Sensors and Actuators A:Physical, 2000, 81(1-3):154-157.
[17] GUO X, HOU J R, GE Y, et al.Highly sensitive magnetoelastic biosensor for Alpha2-macroglobulin detection based on MnFe2O4@chitosan/MWCNTs/PDMS composite[J].Micromachines, 2023, 14(2):401.
[18] SANG S B, GUO X, WANG J Z, et al.Real-time and label-free detection of VKORC1 genes based on a magnetoelastic biosensor for warfarin therapy[J].Journal of Materials Chemistry.B, 2020, 8(29):6271-6276.
[19] BELTRAMI L V R, BELTRAMI M, ROESCH-ELY M, et al.Magnetoelastic sensors with hybrid films for bacteria detection in milk[J].Journal of Food Engineering, 2017, 212:18-28.
[20] GAO C D, ZENG Z H, PENG S P, et al.Magnetostrictive alloys:Promising materials for biomedical applications[J].Bioactive Materials, 2021, 8:177-195.
[21] GANDOMZADEH D, ABBASPOUR-FARD M H.Numerical study of the effect of core geometry on the performance of a magnetostrictive transducer[J].Journal of Magnetism and Magnetic Materials, 2020, 513:166823.
[22] HRISTOFOROU E, KTENA A, ANGELOPOULOS S.Magnetostrictive materials for sensing applications[M]//Encyclopedia of Smart Materials.Amsterdam:Elsevier, 2022:355-365.
[23] SRINIVASAN S Y, PAKNIKAR K M, BODAS D, et al.Applications of cobalt ferrite nanoparticles in biomedical nanotechnology[J].Nanomedicine, 2018, 13(10):1221-1238.
[24] LIANG B, LI Z C, DIXON S, et al.Development of a magnetostrictive Fe3O4-film electromagnetic acoustic transducer[J].Sensors and Actuators A:Physical, 2023, 361:114593.
[25] YAN S P, WANG W, YAN X H, et al.Temperature characterization of magnetic and elastic parameters of TFD giant magnetostrictive materials[J].Journal of Magnetism and Magnetic Materials, 2022, 563:169979.
[26] ELHAJJAR R, LAW C T, PEGORETTI A.Magnetostrictive polymer composites:Recent advances in materials, structures and properties[J].Progress in Materials Science, 2018, 97:204-229.
[27] SANG S B, GE Y, JI J L, et al.Magneto-stress-electric-coupled biosensors originated in magnetostrictive effect for sensitization[J].Sensors and Actuators B:Chemical, 2023, 378:133209.
[28] 蒋君, 王政彬, 李毅.氧杂质对Zr基非晶合金腐蚀性能的影响[C].第九届海洋材料与腐蚀防护大会暨第三届钢筋混凝土耐久性与设施服役安全大会, 烟台, 2023:1.
JIANG J, WANG Z B, LI Y.Effect of oxygen impurities on the corrosion performance of Zr-based amorphous alloys[C].The 9th Conference on Marine Materials and Corrosion Protection and the 3rd Conference on Reinforced Concrete Durability and Facility Service Safety, Yantai, 2023:1.
[29] ZHU Q K, ZHANG S L, GENG G H, et al.Effects of annealing on the structure and magnetic properties of Fe80B20 magnetostrictive fibers[J].Journal of Applied Biomaterials & Functional Materials, 2016, 14(Suppl 1):e56-e61.
[30] LAKSHMANAN R S, GUNTUPALLI R, HU J, et al.Detection of Salmonella typhimurium in fat free milk using a phage immobilized magnetoelastic sensor[J].Sensors & Actuators:B.Chemical, 2007, 126(2):544-550.
[31] CHAI Y T, HORIKAWA S, LI S Q, et al.A surface-scanning coil detector for real-time, in situ detection of bacteria on fresh food surfaces[J].Biosensors & Bioelectronics, 2013, 50:311-317.
[32] SHARMA R S, KARMAKAR S, KUMAR P, et al.Application of filamentous phages in environment:A tectonic shift in the science and practice of ecorestoration[J].Ecology and Evolution, 2019, 9(4):2263-2304.
[33] JOHNSON M L, WAN J H, HUANG S C, et al.A wireless biosensor using microfabricated phage-interfaced magnetoelastic particles[J].Sensors and Actuators A:Physical, 2008, 144(1):38-47.
[34] PANG P F, GAO X J, XIAO X L, et al.A wireless pH sensor using magnetoelasticity for measurement of body fluid acidity[J].Analytical Sciences:the International Journal of the Japan Society for Analytical Chemistry, 2007, 23(4):463-467.
[35] PARK M K, OH J H, CHIN B A.The effect of incubation temperature on the binding of Salmonella typhimurium to phage-based magnetoelastic biosensors[J].Sensors and Actuators B:Chemical, 2011, 160(1):1427-1433.
[36] ATALAY S, KOLAT V S, ATALAY F E, et al.Magnetoelastic sensor for magnetic nanoparticle detection[J].Journal of Magnetism and Magnetic Materials, 2018, 465:151-155.
[37] SAIZ P G, PORRO J M, LASHERAS A, et al.Influence of the magnetic domain structure in the mass sensitivity of magnetoelastic sensors with different geometries[J].Journal of Alloys and Compounds, 2021, 863:158555.
[38] SHENG L N, ZHU M J.Practical in-storage interventions to control foodborne pathogens on fresh produce[J].Comprehensive Reviews in Food Science and Food Safety, 2021, 20(5):4584-4611.
[39] CARSTENS C K, SALAZAR J K, DARKOH C.Multistate outbreaks of foodborne illness in the United States associated with fresh produce from 2010 to 2017[J].Frontiers in Microbiology, 2019, 10:2667.
[40] CUNNINGHAM A, CAMPBELL K, MCAULIFFE O.Bacteriophages and rapid detection of bacterial pathogens:A novel approach[M]//Reference Module in Life Sciences.Amsterdam:Elsevier, 2018.
[41] FAROOQ U, YANG Q L, ULLAH M W, et al.Bacterial biosensing:Recent advances in phage-based bioassays and biosensors[J].Biosensors & Bioelectronics, 2018, 118:204-216.
[42] SINGH S, DHANJAL D S, SONALI, et al.An insight in bacteriophage based biosensors with focus on their detection methods and recent advancements[J].Environmental Technology & Innovation, 2020, 20:101081.
[43] CHEN I H, HORIKAWA S, BRYANT K, et al.Bacterial assessment of phage magnetoelastic sensors for Salmonella enterica Typhimurium detection in chicken meat[J].Food Control, 2017, 71:273-278.
[44] WANG F G, HORIKAWA S, HU J J, et al.Detection of Salmonella typhimurium on spinach using phage-based magnetoelastic biosensors[J].Sensors, 2017, 17(2):386.
[45] CHOI I Y, CHOE J, CHIN B A, et al.User-friendly, signal-enhanced planar spiral coil-based magnetoelastic biosensor combined with humidity-resistant phages for simultaneous detection of Salmonella Typhimurium and Escherichia coli O157:H7 on fresh produce[J].Sensors and Actuators B:Chemical, 2023, 393:134179.
[46] 李宇超. 便携式磁弹性传感器检测系统优化及应用研究[D].太原:太原理工大学, 2020.
LI Y C.Research on optimization and application of portable magnetoelastic sensor detection system[D].Taiyuan:Taiyuan University of Technology, 2020.
[47] LEE H E, JEON Y B, CHIN B A, et al.Performance of wild, tailed, humidity-robust phage on a surface-scanning magnetoelastic biosensor for Salmonella Typhimurium detection[J].Food Chemistry, 2023, 409:135239.
[48] GUO X, GAO S, SANG S B, et al.Detection system based on magnetoelastic sensor for classical swine fever virus[J].Biosensors & Bioelectronics, 2016, 82:127-131.
[49] PARK M K, HIREMATHA N, WEERAKOON K A, et al.Effects of surface morphologies of fresh produce on the performance of phage-based magnetoelastic biosensors[J].Journal of the Electrochemical Society, 2012, 160(1):B6-B12.
[50] JING X D, SHAN S, XING K Y, et al.Sensitive fluorescence ELISA with streptavidin scaffolded DNA tetrads for the detection of Escherichia coli O157:H7[J].Journal of Dairy Science, 2023, 106(9):5930-5939.
[51] TAWIL N, SACHER E, MANDEVILLE R, et al.Surface plasmon resonance detection of E.coli and methicillin-resistant S.aureus using bacteriophages[J].Biosensors and Bioelectronics, 2012, 37(1):24-29.
[52] WU S, SHENG L N, LU X, et al.Screening of bio-recognition elements by phage display and their application in the detection of foodborne pathogens[J].TrAC Trends in Analytical Chemistry, 2024, 171:117481.
[53] ZHOU Y Q, LI Z Y, HUANG J J, et al.Development of a phage-based electrochemical biosensor for detection of Escherichia coli O157∶H7 GXEC-N07[J].Bioelectrochemistry, 2023, 150:108345.
[54] WANG J, LI H H, LI C B, et al.EIS biosensor based on a novel Myoviridae bacteriophage SEP37 for rapid and specific detection of Salmonella in food matrixes[J].Food Research International, 2022, 158:111479.
[55] YUE H, HE Y, FAN E C, et al.Label-free electrochemiluminescent biosensor for rapid and sensitive detection of pseudomonas aeruginosa using phage as highly specific recognition agent[J].Biosensors & Bioelectronics, 2017, 94:429-432.
[56] YUE H, ZHOU Y L, WANG P S, et al.A facile label-free electrochemiluminescent biosensor for specific detection of Staphylococcus aureus utilizing the binding between immunoglobulin G and protein A[J].Talanta, 2016, 153:401-406.
[57] WANG S, HU J H, YOU H, et al.Tesla valve-assisted biosensor for dual-mode and dual-target simultaneous determination of foodborne pathogens based on phage/DNAzyme co-modified zeolitic imidazolate framework-encoded probes[J].Analytica Chimica Acta, 2023, 1275:341591.
[58] GAO X J, YANG W Y, PANG P F, et al.A wireless magnetoelastic biosensor for rapid detection of glucose concentrations in urine samples[J].Sensors and Actuators B:Chemical, 2007, 128(1):161-167.
[59] KHARISMASARI C Y, IRKHAM, ZEIN M I H L, et al.CRISPR/Cas12-based electrochemical biosensors for clinical diagnostic and food monitoring[J].Bioelectrochemistry, 2024, 155:108600.
[60] AYENIMO J G, ADELOJU S B.Amperometric detection of glucose in fruit juices with polypyrrole-based biosensor with an integrated permselective layer for exclusion of interferences[J].Food Chemistry, 2017, 229:127-135.
[61] SMUTOK O, KAVETSKYY T, PROKOPIV T, et al.New micro/nanocomposite with peroxidase-like activity in construction of oxidases-based amperometric biosensors for ethanol and glucose analysis[J].Analytica Chimica Acta, 2021, 1143:201-209.
[62] SALEEM P H, MOINFAR S, MOHAMMED I A.Determination of Cr and Pb in edible vegetable oils by coupling of extraction induced by emulsion breaking with dispersive liquid-liquid microextraction followed by flame atomic absorption spectrometry detection[J].Journal of Food Composition and Analysis, 2023, 124:105683.
[63] LI K J, YANG H Y, YUAN X, et al.Recent developments of heavy metals detection in traditional Chinese medicine by atomic spectrometry[J].Microchemical Journal, 2021, 160:105726.
[64] SEREILAKHENA P, HUYÊgN N, AVNI B, et al.In situ Bi/carboxyphenyl-modified glassy carbon electrode as a sensor platform for detection of Cd2+ and Pb2+ using square wave anodic stripping voltammetry[J].Sensing and Bio-Sensing Research, 2021, 34:100455.
[65] DURAI L, BADHULIKA S.Stripping voltammetry and chemometrics assisted ultra-selective, simultaneous detection of trace amounts of heavy metal ions in aqua and blood serum samples[J].Sensors and Actuators Reports, 2022, 4:100097.
[66] SANG S B, GAO S, GUO X, et al.The detection of Pb2+ in solution using bare magnetoelastic resonator[J].Applied Physics Letters, 2016, 108(5):054102.1-054102.4.
[67] GUO X, SANG S B, JIAN A Q, et al.A bovine serum albumin-coated magnetoelastic biosensor for the wireless detection of heavy metal ions[J].Sensors and Actuators B:Chemical, 2018, 256:318-324.
[68] 高爽. 基于磁弹性传感器的重金属离子检测系统[D].太原:太原理工大学, 2016.
GAO S.Heavy metal ion detection system based on magneto-elastic sensor[D].Taiyuan:Taiyuan University of Technology, 2016.
[69] GUO X, LIU R, LI H M, et al.A novel NiFe2O4/paper-based magnetoelastic biosensor to detect human serum albumin[J].Sensors, 2020, 20(18):5286.
[70] SANG S B, LI Y C, GUO X, et al.A portable device for rapid detection of human serum albumin using an immunoglobulin-coating-based magnetoelastic biosensor[J].Biosensors & Bioelectronics, 2019, 141:111399.
文章导航

/