脂肪酶是继蛋白酶和淀粉酶之后的第三大工业化酶制剂,可作为油脂改性的重要催化剂。寻找适合在中性低温环境下应用于油脂深加工的新型脂肪酶具有重要工业应用意义。该研究从黑曲霉基因组中克隆并异源表达了一种分子质量为59 kDa的脂肪酶AtglF,在摇瓶发酵条件下,酶活达到25.36 U/mL。此酶在40 ℃和pH 6.0下表现出最高酶活力,在25~50 ℃和pH 5.0~7.0能够表现出60%以上酶活力;常见金属离子对该酶无显著激活作用,Fe3+和Al3+对该酶具有明显抑制作用;N,N-二甲基甲酰胺、甲苯或甲醇可显著提高酶活力。该酶对所测试的18种天然油脂和人工合成底物皆具有不同程度的水解作用,其中对棕榈油的水解作用最强,其最佳化学合成底物为对硝基苯酚辛酸酯(C8)。以上特性表明,AtglF在食品工业、洗涤剂、有机合成等方面可能具有潜在应用价值。
Lipase is the third largest industrial biocatalyst, following protease and amylase.It has been widely used for oil modification in different fields.Exploring new lipases has garnered significant industrial attention, particularly in industries requiring neutral and low-temperature conditions.In this study, a novel lipase gene atglF (encoding a 59 kDa protein) from Aspergillus niger was cloned and heterologously expressed in Pichia pastoris.Under shaking flask conditions, the maximum activity reached 25.36 U/mL.Recombinant AtglF exhibited optimum activity at 40 ℃ and pH 6.0, retaining over 60% of its maximal activity at 25-50 ℃ and pH 5.0-7.0.No significant activation effect on AtglF activity was observed among the tested metal ions.However, Fe3+ and Al3+ exhibited inhibitory effects on AtglF.The activities were significantly enhanced in the presence of N,N-dimethylformamide, toluene, and methanol.The AtglF displayed different hydrolysis activities toward 18 tested natural oils and synthetic substrates.The highest activities were observed with palm oil and 4-nitrophenyl octanoate (C8), respectively.These characteristics of AtglF indicated its great potential for different industrial applications such as the food industry, detergent industry, and organic synthesis.
[1] RABBANI G, AHMAD E, ZAIDI N D, et al.pH-Induced molten globule state of Rhizopus niveus lipase is more resistant against thermal and chemical denaturation than its native state[J].Cell Biochemistry and Biophysics, 2012, 62(3):487-499.
[2] QUILLES J C J, BRITO R R, BORGES J P, et al.Modulation of the activity and selectivity of the immobilized lipases by surfactants and solvents[J].Biochemical Engineering Journal, 2015, 93:274-280.
[3] STERGIOU P Y, FOUKIS A, FILIPPOU M, et al.Advances in lipase-catalyzed esterification reactions[J].Biotechnology Advances, 2013, 31(8):1846-1859.
[4] CHANDRA P, ENESPA, SINGH R, et al.Microbial lipases and their industrial applications:A comprehensive review[J].Microbial Cell Factories, 2020, 19(1):169.
[5] 张冰玉. 低温脂肪酶基因的克隆、表达及脂肪酶基因高通量筛选方法的初步建立[D].北京:中国农业科学院, 2020.
ZHANG B Y.Cloning and expression of low-temperature lipase gene and preliminary establishment of Qualcomm screening method for lipase gene[D].Beijing:Chinese Academy of Agricultural Sciences, 2020.
[6] GANASEN M, YAACOB N, Raja Noor Zaliha Raja Abd Rahman, et al.Cold-adapted organic solvent tolerant alkalophilic family I.3 lipase from an Antarctic Pseudomonas[J].International Journal of Biological Macromolecules, 2016, 92:1266-1276.
[7] 诸葛健, 王正祥.工业微生物实验技术手册[M].北京:中国轻工业出版社, 1994:94-302.
ZHU G J, WANG Z X.Procedure Manual of Industrial Microbial Experimental[M].Beijing:China Light Industry Press, 1994:94-302.
[8] 丛珊滋. 黑曲霉脂类水解酶系的表征与功能解析[D].天津:天津科技大学, 2019.
CONG S Z.Characterization and functional assignment of Aspergillus niger lipolytic enzymes[D].Tianjin:Tianjin University of Science & Technology, 2019.
[9] YAO J, GUI L, YIN S C.A novel esterase from a soil metagenomic library displaying a broad substrate range[J].AMB Express, 2021, 11(1):38.
[10] SHARMA P, SHARMA N, PATHANIA S, et al.Purification and characterization of lipase by Bacillus methylotrophicus PS3 under submerged fermentation and its application in detergent industry[J].Journal of Genetic Engineering and Biotechnology, 2017, 15(2):369-377.
[11] 张悦. 低温脂肪酶Lip ZC12理性改造及纳米花固定化研究[D].大连:大连理工大学, 2019.
ZHANG Y.Study on rational transformation of lip ZC12 and immobilization of nanoflowers[D].Dalian:Dalian University of Technology, 2019.
[12] INFANZÓN B, SOTELO P H, MARTÍNEZ J, et al.Rational evolution of the unusual Y-type oxyanion hole of Rhodococcus sp.CR53 lipase LipR[J].Enzyme and Microbial Technology, 2018, 108:26-33.
[13] ZHANG Y, JI F L, WANG J Y, et al.Purification and characterization of a novel organic solvent-tolerant and cold-adapted lipase from Psychrobacter sp.ZY124[J].Extremophiles, 2018, 22(2):287-300.
[14] MAHFOUDHI A, BENMABROUK S, FENDRI A, et al.Fungal lipases as biocatalysts:A promising platform in several industrial biotechnology applications[J].Biotechnology and Bioengineering, 2022, 119(12):3370-3392.
[15] SINCHAIKUL S, SOOKKHEO B, PHUTRAKUL S, et al.Optimization of a thermostable lipase from Bacillus stearothermophilus P1:Overexpression, purification, and characterization[J].Protein Expression and Purification, 2001, 22(3):388-398.
[16] BALASUBRAMANIAM B, SUDALAIYADUM PERUMAL A, JAYARAMAN J, et al.Comparative analysis for the production of fatty acid alkyl esterase using whole cell biocatalyst and purified enzyme from Rhizopus oryzae on waste cooking oil (sunflower oil)[J].Waste Management, 2012, 32(8):1539-1547.
[17] KATIYAR M, ALI A.Effect of metal ions on the hydrolytic and transesterification activities of Candida rugosa lipase[J].Journal of Oleo Science, 2013, 62(11):919-924.
[18] XING S Q, ZHU R N, CHENG K, et al.Gene expression, biochemical characterization of a Sn-1, 3 extracellular lipase from Aspergillus niger GZUF36 and its model-structure analysis[J].Frontiers in Microbiology, 2021, 12:633489.
[19] 刘光. 黑曲霉脂肪酶的分离纯化及其性质研究[D].广州:华南理工大学, 2013.
LIU G.Purification and characterization of lipase from Aspergillus niger[D]. Guangzhou:South China University of Technology, 2013.
[20] 陈月晓, 马玉霞, 陆颖, 等.常见食用植物油中特征性脂肪酸的检测及鉴别[J].中国食品卫生杂志, 2012, 24(4):301-305.
CHEN Y X, MA Y X, LU Y, et al.Detection and identification of characteristic fatty acids in common edible vegetable oil[J].Chinese Journal of Food Hygiene, 2012, 24(4):301-305.