以桄榔粉为主要研究原料,将马铃薯淀粉和玉米淀粉作为桄榔粉的比较对象,对其淀粉颗粒形态、粒径大小、晶体类型、直链淀粉含量进行探讨,并通过体外消化试验得出其淀粉组分、淀粉体外水解曲线,最后计算得出淀粉样品的预测升糖指数(glycemic index,GI)。研究发现桄榔粉颗粒呈扁长的椭圆形,表面较光滑,且有部分凹陷;桄榔粉颗粒平均粒径比玉米淀粉大,比马铃薯淀粉小。桄榔粉、马铃薯淀粉、玉米淀粉的晶体结构分别为C型、B型、A型。桄榔粉的抗性淀粉和直链淀粉含量均高于玉米淀粉,低于马铃薯淀粉;桄榔粉的慢消化淀粉含量比马铃薯淀粉高,比玉米淀粉低;桄榔粉的快消化淀粉含量最低。3种淀粉的水解率由小到大为:马铃薯淀粉<桄榔粉<玉米淀粉。3种淀粉的GI值由小到大排列为:马铃薯淀粉(52.10)<桄榔粉(53.00)<玉米淀粉(76.74)。桄榔粉为低GI食物,与玉米淀粉相比,桄榔粉具有更强的抗消化性,GI值更低,因此,桄榔粉比玉米淀粉更适合作为糖尿病患者食用原料及产品开发原料。
With white Arenga pinnata starch as the main raw material, potato starch, and corn starch were used as comparison objects.The starch particle morphology, particle size, crystal type, and amylose content were discussed.The starch components and starch hydrolysis curve were obtained through digestion test in vitro.Finally, the predicted glycemic index (GI) of starch samples were calculated.It was found that the A. pinnata starch particles were flat and long oval, the surface was smooth and partially depressed.The average particle size of A. pinnata starch particles was larger than corn starch and smaller than potato.The crystal structures of A. pinnata starch, potato starch, and corn starch were of type C, B, and A, respectively.The content of resistant starch and amylose of A. pinnata starch was higher than corn starch, but lower than potato starch.The slowly digestible starch content of A. pinnata starch was higher than potato starch, but lower than corn starch.A. pinnata starch had the lowest content of rapidly digestible starch.The hydrolysis rates of the three starches were as follows:potato starch < A. pinnata starch < corn starch.The GI values of the three starches were ranked from small to large as follows:Potato starch (52.10) < A. pinnata starch (53.00) < corn starch (76.74).A. pinnata starch was a low GI food.Compared with corn starch, A. pinnata starch had stronger anti-digestibility and lower GI value.Therefore, it is more suitable as a raw material for diabetic patients and for product development than corn starch.
[1] JENKINS D J, WOLEVER T M, TAYLOR R H, et al.Glycemic index of foods:A physiological basis for carbohydrate exchange[J].The American Journal of Clinical Nutrition, 1981, 34(3):362-366.
[2] WOLEVER T M S, VORSTER H H, BJÖRCK I, et al.Determination of the glycaemic index of foods:Interlaboratory study[J].European Journal of Clinical Nutrition, 2003, 57(3):475-482.
[3] GYAU AKYEREKO Y, DUFIE WIREKO-MANU F, ODURO I.Influence of processing methods on food components and glycaemic index of cassava-based traditional foods[J].Journal of Food and Nutrition Sciences, 2020, 8(1):6.
[4] 徐箐, 柳嘉, 林静, 等.低GI淀粉原料的筛选及理化特性和体外消化特性的研究[J].食品研究与开发, 2020, 41(20):8-14.
XU Q, LIU J, LIN J, et al.Screening of low glycemic index starch and study on physico-chemical and in vitro digestive properties[J].Food Research and Development, 2020, 41(20):8-14.
[5] ENGLYST H N, KINGMAN S M, CUMMINGS J H.Classification and measurement of nutritionally important starch fractions[J].European Journal of Clinical Nutrition, 1992, 46(Suppl 2):S33-S50.
[6] 李霞, 蒋彦婕, 陶亚军, 等.低升糖指数水稻研究进展[J].中国水稻科学, 2022, 36(4):336-347.
LI X, JIANG Y J, TAO Y J, et al.Research progress of rice with low glycemic index[J].Chinese Journal of Rice Science, 2022, 36(4):336-347.
[7] 韦燕燕, 蒙舒婷, 张海霞.微波消解-ICP-MS法测定桄榔粉中多种元素[J].食品工业, 2020, 41(10):310-313.
WEI Y Y, MENG S T, ZHANG H X.Determination of multiple elements in gomuti palm powder by microwave digestion-ICP-MS[J].The Food Industry, 2020, 41(10):310-313.
[8] 梅江洋. 桄榔淀粉多尺度结构与理化性质研究[D].南宁:广西大学, 2021.
MEI J Y.Study on multi-scale structure and functional properties of Arenga pinnata starch[D].Nanning:Guangxi University, 2021.
[9] 黄洁津, 兰秀, 覃杰凤, 等.桄榔粉的开发现状及研究进展[J].农产品加工, 2024(5):88-92.
HUANG J J, LAN X, QIN J F, et al.Processing and utilization of sugar palm powder and its research progress[J].Farm Products Processing, 2024(5):88-92.
[10] 李梦赟, 任民红, 刘远森, 等.桄榔抗性淀粉调控保加利亚乳杆菌和植物乳杆菌的增殖及耐受性[J].现代食品科技, 2022, 38(2):72-78.
LI M Y, REN M H, LIU Y S, et al.Proliferation and tolerance capability of Lactobacillus bulgaricus and Lactobacillus plantarum regulated by the resistant starch from Arenga pinnata[J].Modern Food Science and Technology, 2022, 38(2):72-78.
[11] 陈斌. 桄榔淀粉纯化工艺及理化特性研究[D].福州:福建农林大学, 2012.
CHEN B.Study on purification process and physicochemical characteristics of Arenga pinnata (Wurmb.) Merr.starch[D].Fuzhou:Fujian Agriculture and Forestry University, 2012.
[12] 赵鑫鑫, 梁倩, 何锐, 等.不同产地桄榔淀粉结构特性与理化性质研究[J].食品安全质量检测学报, 2021, 12(21):8501-8507.
ZHAO X X, LIANG Q, HE R, et al.Study on the structural and physicochemical properties of Arenga pinnata starches from different producing areas[J].Journal of Food Safety & Quality, 2021, 12(21):8501-8507.
[13] QI X, TESTER R F.Utilisation of dietary fibre (non-starch polysaccharide and resistant starch) molecules for diarrhoea therapy:A mini-review[J].International Journal of Biological Macromolecules, 2019, 122:572-577.
[14] 曾绍校. 莲子淀粉品质特性的研究与应用[D].福州:福建农林大学, 2007.
ZENG S X.Studies on qualitative characteristics of lotus-seed (Nulumbo nucifera Gaertn) starch and its apllication[D].Fuzhou:Fujian Agriculture and Forestry University, 2007.
[15] 郭会会. 一种新培育高直链玉米淀粉理化性质的研究及低升糖指数饼干研制[D].泰安:山东农业大学, 2021.
GUO H H.Physicochemical properties of a newly cultivated high amylose corn starch and preparation of low glycemic index biscuits[D].Shandong:Shandong Agricultural University,2021.
[16] 苟梦星, 岳春, 李瑞, 等.低GI姜黄功能调制乳的研制及品质分析[J].食品工业, 2023, 44(6):38-43.
GOU M X, YUE C, LI R, et al.Preparation and quality analysis of turmeric functional milk with low GI[J].The Food Industry, 2023, 44(6):38-43.
[17] ŚWIECA M, BARANIAK B, GAWLIK-DZIKI U.In vitro digestibility and starch content, predicted glycemic index and potential in vitro antidiabetic effect of lentil sprouts obtained by different germination techniques[J].Food Chemistry, 2013, 138(2-3):1414-1420.
[18] 王浩瑞, 李小平.血糖生成指数测定方法及加工方式对谷物血糖生成指数的影响研究进展[J].食品科学, 2023, 44(11):338-347.
WANG H R, LI X P.A review of the methods for measuring glycemic index(GI) and the effect of processing methods on GI value of grains[J].Food Science, 2023, 44(11):338-347.
[19] ZHANG L, MEI J Y, REN M H, et al.Optimization of enzyme-assisted preparation and characterization of Arenga pinnata resistant starch[J].Food Structure, 2020, 25:100149.
[20] 李恒, 刘静, 孙桂菊, 等.抗性淀粉、脂肪和蛋白质对淀粉体外消化速度的影响[J].卫生研究, 2007, 36(3):308-310.
LI H, LIU J, SUN G J, et al.Effects of resistant starch, fat and protein on rates of starch hydrolysis in vitro[J].Journal of Hygiene Research, 2007, 36(3):308-310.
[21] 敖志超, 马玉琦, 张立然, 等.不同晶体类型药食两用植物淀粉粒结构及体外消化研究[J].食品与发酵工业, 2022, 48(15):200-206.
AO Z C, MA Y Q, ZHANG L R, et al.Starch granules structure and digestion in vitro of different crystal types of medicinal and edible plants[J].Food and Fermentation Industries, 2022, 48(15):200-206.
[22] 赵米雪, 包亚莉, 刘培玲.淀粉颗粒微观精细结构研究进展[J].食品科学, 2018, 39(11):284-294.
ZHAO M X, BAO Y L, LIU P L.Progress in research on fine microstructure of starch granules[J].Food Science, 2018, 39(11):284-294.
[23] WANG R, WANG J, LIU M, et al.Association of starch crystalline pattern with acetylation property and its influence on gut microbota fermentation characteristics[J].Food Hydrocolloids, 2022, 128:107556.